目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80μg·cm^(-2))下的5nm叶...目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80μg·cm^(-2))下的5nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35nm六种波段宽的光谱数据,再分析评价5~35nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method,VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index,NDVI)和简单比值指数(simple ratio index,SRI)其次,虽然其决定系数R^2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其"独立于传感器"的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。展开更多
叶绿素含量是评价农作物健康状况、生产能力和环境胁迫的重要指标,实时、快速、准确获取农作物叶片叶绿素含量对监测农作物生长状况具有重要意义。遥感是获取区域和全球农作物叶片叶绿素含量的有效途径,但已有的作物叶片叶绿素含量遥感...叶绿素含量是评价农作物健康状况、生产能力和环境胁迫的重要指标,实时、快速、准确获取农作物叶片叶绿素含量对监测农作物生长状况具有重要意义。遥感是获取区域和全球农作物叶片叶绿素含量的有效途径,但已有的作物叶片叶绿素含量遥感反演研究未充分考虑下垫面背景的干扰,影响了反演精度。为此,以Sentinel-2遥感卫星影像为数据源,结合典型水稻田的观测数据,使用PROSAIL辐射传输模型建立了水稻田叶片叶绿素含量反演查找表,评估了利用绿光波段和不同红边波段构建的叶绿素指数(CI)和两个不同红边波段构建的Zarco and Miller指数(ZM)反演叶片叶绿素含量的差异,引入G(Greenness index)指数减小背景干扰对叶片叶绿含量反演的影响。研究结果表明:(1)基于不同波段构建的光谱指数反演的叶片叶绿素含量精度存在差异,其中CI_(740)(R^(2)=0.79,RMSE=9.02μg·cm^(-2))反演精度最高,其次为ZM(R^(2)=0.71,RMSE=10.53μg·cm^(-2))、CI_(705)(R^(2)=0.69,RMSE=9.17μg·cm^(-2))和CI_(783)(R^(2)=0.67,RMSE=10.84μg·cm^(-2));(2)水稻叶片叶绿素含量反演结果受背景影响明显,特别在水稻生长早期,由于背景干扰较大,反演结果明显偏低[平均相对误差(MRE)为-18.87%~-31.94%];(3)引入G指数构建的CI/G和ZM/G可以有效消除背景的影响,提高水稻叶片叶绿素含量反演精度(MRE为8.11%~18.11%)。结果对提高水稻不同叶面积指数水平下的叶片叶绿素含量遥感反演精度具有重要参考意义。展开更多
【目的】叶片叶绿素含量(leaf chlorophyll content,LCC)是表征金沙柚(Citrus grandis(L.)Osbeck)长势状况的重要指标。利用无人机RGB图像可实现植被长势参数实时、无损监测。然而,当前人们对无人机RGB图像监测蜜柚LCC时的敏感图像特征...【目的】叶片叶绿素含量(leaf chlorophyll content,LCC)是表征金沙柚(Citrus grandis(L.)Osbeck)长势状况的重要指标。利用无人机RGB图像可实现植被长势参数实时、无损监测。然而,当前人们对无人机RGB图像监测蜜柚LCC时的敏感图像特征及适宜感兴趣区(region of interest,ROI)选取模式尚不明确。为构建基于无人机RGB图像的蜜柚LCC监测模型,实现利用无人机RGB图像快速监测金沙柚LCC。【方法】本研究基于不同氮肥水平的金沙柚田间试验,于开花期、幼果期和果实膨大期测定蜜柚LCC,同步使用无人机采集蜜柚RGB图像,并提取不同类型图像特征(6个颜色特征、9个植被指数、9个纹理特征);分别在叶片ROI和冠层ROI两种模式下,分析不同图像特征与蜜柚LCC之间的相关性,确定最优ROI选取模式及敏感图像特征,并构建定量监测模型。【结果】包含有丰富红光信息的红光值(redness intensity,R)、超红植被指数(excess red vegetation index,ExR)和基于红光波段提取的均值(mean texture based on the red band,MEA-R)对蜜柚LCC敏感,在叶片ROI模式下利用其构建的监测模型精度高于在冠层ROI模式下构建的监测模型精度。3个图像特征中,ExR与蜜柚LCC之间相关性最高,在叶片ROI模式下构建的全生育期监测模型建模决定系数(determination coefficient,R^(2))达到0.83,模型检验时归一化均方根误差(normalized root mean square error,nRMSE)和偏差(bias)分别为0.24和0.01 mg/g。R和MEA-R表现相似,叶片ROI模式下其建模R^(2)为0.72,检验nRMSE为0.33。【结论】考虑到监测模型的准确性和图像特征提取的方便性,本研究确定可基于叶片ROI模式提取图像特征ExR并构建全生育期蜜柚LCC监测模型:LCC=-0.01×ExR+2.83,实现利用无人机搭载数码相机快速、准确监测园区尺度金沙柚LCC,在金沙柚生长无损监测诊断和精确管理中具有应用价值。展开更多
文摘目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80μg·cm^(-2))下的5nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35nm六种波段宽的光谱数据,再分析评价5~35nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method,VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index,NDVI)和简单比值指数(simple ratio index,SRI)其次,虽然其决定系数R^2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其"独立于传感器"的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。
文摘叶绿素含量是评价农作物健康状况、生产能力和环境胁迫的重要指标,实时、快速、准确获取农作物叶片叶绿素含量对监测农作物生长状况具有重要意义。遥感是获取区域和全球农作物叶片叶绿素含量的有效途径,但已有的作物叶片叶绿素含量遥感反演研究未充分考虑下垫面背景的干扰,影响了反演精度。为此,以Sentinel-2遥感卫星影像为数据源,结合典型水稻田的观测数据,使用PROSAIL辐射传输模型建立了水稻田叶片叶绿素含量反演查找表,评估了利用绿光波段和不同红边波段构建的叶绿素指数(CI)和两个不同红边波段构建的Zarco and Miller指数(ZM)反演叶片叶绿素含量的差异,引入G(Greenness index)指数减小背景干扰对叶片叶绿含量反演的影响。研究结果表明:(1)基于不同波段构建的光谱指数反演的叶片叶绿素含量精度存在差异,其中CI_(740)(R^(2)=0.79,RMSE=9.02μg·cm^(-2))反演精度最高,其次为ZM(R^(2)=0.71,RMSE=10.53μg·cm^(-2))、CI_(705)(R^(2)=0.69,RMSE=9.17μg·cm^(-2))和CI_(783)(R^(2)=0.67,RMSE=10.84μg·cm^(-2));(2)水稻叶片叶绿素含量反演结果受背景影响明显,特别在水稻生长早期,由于背景干扰较大,反演结果明显偏低[平均相对误差(MRE)为-18.87%~-31.94%];(3)引入G指数构建的CI/G和ZM/G可以有效消除背景的影响,提高水稻叶片叶绿素含量反演精度(MRE为8.11%~18.11%)。结果对提高水稻不同叶面积指数水平下的叶片叶绿素含量遥感反演精度具有重要参考意义。
文摘【目的】叶片叶绿素含量(leaf chlorophyll content,LCC)是表征金沙柚(Citrus grandis(L.)Osbeck)长势状况的重要指标。利用无人机RGB图像可实现植被长势参数实时、无损监测。然而,当前人们对无人机RGB图像监测蜜柚LCC时的敏感图像特征及适宜感兴趣区(region of interest,ROI)选取模式尚不明确。为构建基于无人机RGB图像的蜜柚LCC监测模型,实现利用无人机RGB图像快速监测金沙柚LCC。【方法】本研究基于不同氮肥水平的金沙柚田间试验,于开花期、幼果期和果实膨大期测定蜜柚LCC,同步使用无人机采集蜜柚RGB图像,并提取不同类型图像特征(6个颜色特征、9个植被指数、9个纹理特征);分别在叶片ROI和冠层ROI两种模式下,分析不同图像特征与蜜柚LCC之间的相关性,确定最优ROI选取模式及敏感图像特征,并构建定量监测模型。【结果】包含有丰富红光信息的红光值(redness intensity,R)、超红植被指数(excess red vegetation index,ExR)和基于红光波段提取的均值(mean texture based on the red band,MEA-R)对蜜柚LCC敏感,在叶片ROI模式下利用其构建的监测模型精度高于在冠层ROI模式下构建的监测模型精度。3个图像特征中,ExR与蜜柚LCC之间相关性最高,在叶片ROI模式下构建的全生育期监测模型建模决定系数(determination coefficient,R^(2))达到0.83,模型检验时归一化均方根误差(normalized root mean square error,nRMSE)和偏差(bias)分别为0.24和0.01 mg/g。R和MEA-R表现相似,叶片ROI模式下其建模R^(2)为0.72,检验nRMSE为0.33。【结论】考虑到监测模型的准确性和图像特征提取的方便性,本研究确定可基于叶片ROI模式提取图像特征ExR并构建全生育期蜜柚LCC监测模型:LCC=-0.01×ExR+2.83,实现利用无人机搭载数码相机快速、准确监测园区尺度金沙柚LCC,在金沙柚生长无损监测诊断和精确管理中具有应用价值。