本文提出了一种基于变换函数与填充函数的模糊粒子群优化算法(Fuzzy partical swarm optimization based on filled function and transformation function,FPSO-TF).以基于不同隶属度函数的多回路模糊控制系统为基础,进一步结合变换函...本文提出了一种基于变换函数与填充函数的模糊粒子群优化算法(Fuzzy partical swarm optimization based on filled function and transformation function,FPSO-TF).以基于不同隶属度函数的多回路模糊控制系统为基础,进一步结合变换函数与填充函数,使该算法减少了陷入局部最优的可能,又可以跳出局部极小值点至更小的点,快速高效地搜索到全局最优解.最后采用基准函数对此算法进行测试,并与几种不同类型的改进算法进行对比分析,验证了此算法的有效性与优越性.展开更多
文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例...文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。展开更多
采用新的函数变换法求出了一类非线性演化方程的两类显示精确孤波解.作为该方程的特例,如K le in-Gordon方程、Landau-G inburg-H iggs方程、Duffing方程和4方程等也都获得了相应的精确孤波解.这种方法也适用于求解具有更高次非线性...采用新的函数变换法求出了一类非线性演化方程的两类显示精确孤波解.作为该方程的特例,如K le in-Gordon方程、Landau-G inburg-H iggs方程、Duffing方程和4方程等也都获得了相应的精确孤波解.这种方法也适用于求解具有更高次非线性项的其他非线性波方程.展开更多
文摘本文提出了一种基于变换函数与填充函数的模糊粒子群优化算法(Fuzzy partical swarm optimization based on filled function and transformation function,FPSO-TF).以基于不同隶属度函数的多回路模糊控制系统为基础,进一步结合变换函数与填充函数,使该算法减少了陷入局部最优的可能,又可以跳出局部极小值点至更小的点,快速高效地搜索到全局最优解.最后采用基准函数对此算法进行测试,并与几种不同类型的改进算法进行对比分析,验证了此算法的有效性与优越性.
文摘文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。