The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic str...The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic strain, visco-elastic strain, instantaneous plastic strain and visco-plastic strain. The result shows that instantaneous deformation modulus tends to increase with the increase of creep stress; soft rocks enhance the ability to resist instantaneous elastic deformation and instantaneous plastic deformation during the multi-level of load and unload in the cyclic process. In respect of specimen JC1099, the ratio of visco-elastic strain to visco-plastic strain varies from 3.15 to 6.58, and the ratio has decreasing tendency with stress increase as a whole; creep deformation tends to be a steady state at low stress level; soft rocks creep usually embodies accelerated creep properties at high stress level. With the damaging variable and the hardening function introduced, a nonlinear creep model of soft rocks is established, in which the decay creep is described by the nonlinear hardening function H of viscidity coefficient. The model can describe the accelerated creep of soft rocks since the nonlinear damaging evolvement variable D of deformation parameter of rocks is introduced. Three stages of soft rocks creep can be described with the uniform creep equation in the nonlinear creep model. With this nonlinear creep model applied to the creep experiments of the ore-rock of Jinchuan Mine III, the nonlinear creep model's curves are in good agreement with experimental data.展开更多
Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subj...Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.展开更多
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c...The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.展开更多
基金Project(2007CB209400) supported by the Major State Basic Research and Development Program of ChinaProject(50774093) supported by the National Natural Science Foundation of ChinaProject(200801) supported by Open Research Fund of Hunan Provincial Key of Safe Mining Techniques of Coal Mines
文摘The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic strain, visco-elastic strain, instantaneous plastic strain and visco-plastic strain. The result shows that instantaneous deformation modulus tends to increase with the increase of creep stress; soft rocks enhance the ability to resist instantaneous elastic deformation and instantaneous plastic deformation during the multi-level of load and unload in the cyclic process. In respect of specimen JC1099, the ratio of visco-elastic strain to visco-plastic strain varies from 3.15 to 6.58, and the ratio has decreasing tendency with stress increase as a whole; creep deformation tends to be a steady state at low stress level; soft rocks creep usually embodies accelerated creep properties at high stress level. With the damaging variable and the hardening function introduced, a nonlinear creep model of soft rocks is established, in which the decay creep is described by the nonlinear hardening function H of viscidity coefficient. The model can describe the accelerated creep of soft rocks since the nonlinear damaging evolvement variable D of deformation parameter of rocks is introduced. Three stages of soft rocks creep can be described with the uniform creep equation in the nonlinear creep model. With this nonlinear creep model applied to the creep experiments of the ore-rock of Jinchuan Mine III, the nonlinear creep model's curves are in good agreement with experimental data.
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of ChinaProject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.
文摘The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.