期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于数据驱动自适应变分非线性chirp模态分解的瞬时频率识别
1
作者 袁平平 满镇 +1 位作者 赵周杰 任伟新 《振动与冲击》 EI CSCD 北大核心 2024年第20期18-25,共8页
为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode d... 为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode decomposition,DDAVNCMD)的方法。通过模态能量占比确定响应信号的模态个数,同时采用导数归一化算法初步估算模态分量的初始频率,并添加迭代时变滤波器来降低噪声的影响,在此基础上再对响应信号进行VNCMD。通过单分量和多分量解析信号及拉索结构试验对所提方法进行验证。研究结果表明,基于DDAVNCMD的瞬时频率识别方法具有较好的准确性和抗噪性。 展开更多
关键词 瞬时频率 非线性chirp模态分解(vncmd) 导数归一化 迭代时滤波器 数据驱动自适应非线性chirp模态分解(DDAvncmd)
在线阅读 下载PDF
基于脊路跟踪的变分非线性调频模态分解方法 被引量:9
2
作者 赵雅琴 聂雨亭 +2 位作者 吴龙文 张宇鹏 何胜阳 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第10期1874-1882,共9页
针对多个辐射源信号混合构成的多分量信号分离问题,提出基于脊路跟踪的变分非线性调频模态分解算法.该方法使用改进的脊路重组算法对时频分布图中各分量瞬时频率进行提取,将提取出的各分量瞬时频率作为变分非线性调频模态分解的预设频率... 针对多个辐射源信号混合构成的多分量信号分离问题,提出基于脊路跟踪的变分非线性调频模态分解算法.该方法使用改进的脊路重组算法对时频分布图中各分量瞬时频率进行提取,将提取出的各分量瞬时频率作为变分非线性调频模态分解的预设频率;利用重构后的多分量信号进行瞬时频率提取,更新预设频率后继续模态分解;重复上述过程,直到迭代前、后频率差值小于预设阈值,输出对应的模态分解结果.实验结果表明,基于脊路跟踪的变分非线性调频模态分解算法比经典变分非线性调频模态分解算法具有更好的多分量信号分离效果. 展开更多
关键词 量信号 脊路重组 瞬时频率估计 非线性调频模态分解
在线阅读 下载PDF
改进变分模态分解与多特征的通信辐射源个体识别方法 被引量:3
3
作者 刘高辉 席宏恩 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期4044-4052,共9页
针对通信辐射源指纹特征难以提取和单一特征识别率不高的问题,并考虑到通信辐射源细微特征的非线性、非平稳特点,该文提出了一种基于改进变分模态分解和多特征的通信辐射源个体识别方法。首先,为了获得变分模态分解的分解层数和惩罚因... 针对通信辐射源指纹特征难以提取和单一特征识别率不高的问题,并考虑到通信辐射源细微特征的非线性、非平稳特点,该文提出了一种基于改进变分模态分解和多特征的通信辐射源个体识别方法。首先,为了获得变分模态分解的分解层数和惩罚因子的最优组合,采用鲸鱼优化算法对通信辐射源符号波形信号的变分模态分解方法进行了改进,该方法以序列复杂度为停止准则,使每个符号波形信号能够自适应地分解出包含非线性指纹特征的高频信号分量和数据信息的低频分量;然后,根据相关阈值选取能够最佳表征辐射源非线性特征的高频信号分量层数,分别对其提取模糊熵、排列熵、Higuchi维数以及Katz维数并组成多域联合特征向量;最后,通过卷积神经网络实现通信辐射源个体识别分类,利用ORACLE公开数据集进行实验。实验结果表明:该方法有较高的识别精度且具有良好的抗噪声性能。 展开更多
关键词 通信辐射源个体识别 模态分解 非线性指纹特征 卷积神经网络
在线阅读 下载PDF
基于粒子群-变分模态分解、非线性自回归神经网络与门控循环单元的滑坡位移动态预测模型研究 被引量:21
4
作者 姜宇航 王伟 +3 位作者 邹丽芳 王如宾 刘世藩 段雪雷 《岩土力学》 EI CAS CSCD 北大核心 2022年第S01期601-612,共12页
以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将... 以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将位移时间序列分解为趋势项、周期项和随机项。趋势项主要受滑坡内部因素影响,采用傅里叶曲线进行拟合预测;周期项由外部因素导致,基于格兰杰因果检验进行成因分析,并引入一种对时间序列历史状态具有较高敏感性的非线性自回归神经网络(NARX)进行预测;随机项频率较高且影响因素无法判定,采用一维门控循环单元(GRU)进行预测。最后将各分量预测位移进行叠加重构,实现滑坡累计位移的预测。结果表明,提出的(PSO-VMD)-NARX-GRU滑坡位移动态预测模型精度较高,且各位移分量预测精度明显高于静态模型中BP神经网络、支持向量机(SVM)和传统自回归模型ARIMA,可为阶跃型滑坡位移预测提供参考。 展开更多
关键词 滑坡位移预测 粒子群算法 模态分解 格兰杰因果检验 非线性自回归神经网络 门控循环单元
在线阅读 下载PDF
基于改进变分模态分解及多重分形的轴承信号非线性分析 被引量:8
5
作者 金江涛 许子非 +3 位作者 李春 缪维跑 张万福 李根 《机械强度》 CAS CSCD 北大核心 2022年第1期45-52,共8页
考虑轴承故障初期具有特征信号微弱、易受噪声干扰以及非线性强等特点。基于分形盒维数提出改进变分模态分解提取轴承故障信号非线性信息方法(Improved Variational Mode Decomposition for Nonlinear Features Extraction,IVMD-NFE)。... 考虑轴承故障初期具有特征信号微弱、易受噪声干扰以及非线性强等特点。基于分形盒维数提出改进变分模态分解提取轴承故障信号非线性信息方法(Improved Variational Mode Decomposition for Nonlinear Features Extraction,IVMD-NFE)。又因非线性信号的多测度性,采用多重分形去趋势波动分析(Multifractal Detrended Fluctuation Analysis,MF-DFA)法,研究各故障信号的多重分形特征。以滚动轴承实验数据为研究对象,采用IVMD-NFE与MF-DFA方法对轴承初期信号进行故障分析与诊断。结果表明:采用IVMD-NFE方法提取的信号可较大程度滤除噪声且具有更低的分形盒维数,提取的非线性特征更具代表性;轴承故障信号呈现多重分形特征,外圈故障的奇异指数α;最大,非线性最强,保持架故障时α;最小,非线性最弱,说明通过数据复杂度可较好反应轴承运行状态,而采用VMD或直接对原始信号进行处理的方法,未能提取有效非线性特征,导致故障区分失败。 展开更多
关键词 模态分解 轴承 非线性 故障诊断
在线阅读 下载PDF
基于变分非线性调频模态分解的滚动轴承多故障诊断方法研究 被引量:1
6
作者 李勇 李志农 +1 位作者 李云龙 钱尼君 《机床与液压》 北大核心 2022年第21期181-187,共7页
基于变分非线性调频模态分解,提出一种滚动轴承多故障诊断方法。对滚动轴承多故障振动信号分量的瞬时频率和瞬时幅值进行估计;在此基础上,通过最小化信号的带宽实现滚动轴承故障信号的重构。对比所提方法与变分模态分解法,通过实验案例... 基于变分非线性调频模态分解,提出一种滚动轴承多故障诊断方法。对滚动轴承多故障振动信号分量的瞬时频率和瞬时幅值进行估计;在此基础上,通过最小化信号的带宽实现滚动轴承故障信号的重构。对比所提方法与变分模态分解法,通过实验案例对所提方法进行验证。结果表明:所提方法明显优于变分模态分解方法,即使在强噪声背景下,仍能有效地实现滚动轴承多故障信号的分解与重构,可以有效地诊断滚动轴承多故障。 展开更多
关键词 非线性调频模态分解 滚动轴承 故障诊断 多故障 强噪声
在线阅读 下载PDF
基于变分模态分解的模态参数识别研究 被引量:7
7
作者 赵亚军 窦远明 张明杰 《振动与冲击》 EI CSCD 北大核心 2020年第2期115-122,共8页
基于变分模态分解(VMD),提出一种新的结构模态参数识别方法:①通过自由振动试验或通过随机减量法从结构随机振动响应中获取结构自由衰减振动响应(FDR),并采用VMD方法从FDR中分解出结构模态响应;②通过经验包络法(EE)计算模态响应瞬时频... 基于变分模态分解(VMD),提出一种新的结构模态参数识别方法:①通过自由振动试验或通过随机减量法从结构随机振动响应中获取结构自由衰减振动响应(FDR),并采用VMD方法从FDR中分解出结构模态响应;②通过经验包络法(EE)计算模态响应瞬时频率,并通过一种该研究新提出的方法计算模态响应瞬时阻尼比;③结构的模态振型向量可通过处理所有可用传感器得到的模态响应得到。瞬时模态频率和模态阻尼比可以捕获模态参数的任何瞬态变化。通过一系列数值和试验算例验证了该方法的有效性,突出了该方法的优势,并对该方法抗噪声性能进行了研究。研究表明,该方法适用于线性和非线性系统,且可用于识别具有密集模态和瞬态特性的系统。 展开更多
关键词 模态参数识别 模态分解(VMD) 非线性系统 密集模态
在线阅读 下载PDF
基于非线性短时傅里叶变换阶次跟踪的变速行星齿轮箱故障诊断 被引量:18
8
作者 王友仁 王俊 黄海安 《中国机械工程》 EI CAS CSCD 北大核心 2018年第14期1688-1695,共8页
针对变速行星齿轮箱信号频率模糊且受噪声影响的问题,提出了基于非线性短时傅里叶变换(NLSTFT)无键相阶次跟踪与变分模态分解的故障诊断方法。用NLSTFT算法估计信号瞬时频率,对其积分获得瞬时相位曲线,通过重采样得到角域信号;利用NCOG... 针对变速行星齿轮箱信号频率模糊且受噪声影响的问题,提出了基于非线性短时傅里叶变换(NLSTFT)无键相阶次跟踪与变分模态分解的故障诊断方法。用NLSTFT算法估计信号瞬时频率,对其积分获得瞬时相位曲线,通过重采样得到角域信号;利用NCOGS算法对角域信号降噪,采用VMD算法进行角域信号模态分解,通过各模态分量信号包络谱解调实现故障诊断。实验结果表明,新方法计算效率高、鲁棒性好,提高了变转速行星齿轮箱故障诊断性能。 展开更多
关键词 行星齿轮箱 无键相阶次跟踪 模态分解 故障诊断 非线性短时傅里叶换(NLSTFT)
在线阅读 下载PDF
旋转机械状态非线性特征提取及状态分类 被引量:5
9
作者 李江 李春 +1 位作者 许子非 金江涛 《电子测量与仪器学报》 CSCD 北大核心 2020年第5期65-74,共10页
为提取淹没于环境和结构噪声下风力机轴承故障信号,基于能量追踪法,提出改进变分模态分解法(improved variational mode decomposition, IVMD),并采用粒子群算法求解最优约束因子,获取准确模态分量;摒弃传统对故障特征频分量的提取,基... 为提取淹没于环境和结构噪声下风力机轴承故障信号,基于能量追踪法,提出改进变分模态分解法(improved variational mode decomposition, IVMD),并采用粒子群算法求解最优约束因子,获取准确模态分量;摒弃传统对故障特征频分量的提取,基于非线性分形理论提出多重分形谱特征因子(multi-fractal spectrum,MFC)以选取最具非线性特征的模态分量,以不同故障程度及状态的轴承加速度信号为对象,采用优化递归变分模态分解获取多分量,通过多重分形谱特征因子最大值选取有效信息分量,通过支持向量机进行故障分类。结果表明优化递归变分模态分解可准确分解振动信号至不同频段,以便故障信息提取;多重分形谱特征因子与信噪比呈正相关,以其最大值选取的分量具备更多有效信息;对IVMD-MFC所选取非线性分量,通过8种非线性特征值构建特征矩阵,通过BP神经网络实现故障分类,诊断准确度达97.5%。表明所提出方法可对不同故障程度的轴承状态进行区分。 展开更多
关键词 模态分解 非线性 信息提取 状态
在线阅读 下载PDF
基于故障电流变化趋势的有源配网高阻故障检测
10
作者 王毅钊 王晓卫 +4 位作者 魏向向 田影 王雪 岳阳 张志华 《电网与清洁能源》 北大核心 2025年第3期78-84,共7页
当有源配网中发生高阻故障时,电弧电流易与电容投切或负荷投切所产生的电流特征相混淆,且高阻故障电流特征微弱,易受到噪声和谐波的干扰,这将导致现有弧光高阻故障检测方法检测精度降低。为了准确检测高阻电弧故障,提出一种基于电弧变... 当有源配网中发生高阻故障时,电弧电流易与电容投切或负荷投切所产生的电流特征相混淆,且高阻故障电流特征微弱,易受到噪声和谐波的干扰,这将导致现有弧光高阻故障检测方法检测精度降低。为了准确检测高阻电弧故障,提出一种基于电弧变化趋势和非线性最小二乘法的高阻电弧故障检测方法。采用首先利用变分模态分解算法(variational mode decomposition,VMD)处理零序电流后,再进行加窗快速傅里叶变换(windowed fast fourier transform,WFFT)提取电流幅值;利用非线性最小二乘法定量表示电弧电流的变化趋势;依据非线性函数的系数差异判断是否发生高阻电弧故障。大量仿真验证表明,所提方法不受噪声影响,具有一定的鲁棒性。 展开更多
关键词 高阻故障 模态分解 加窗快速傅里叶 非线性最小二乘法
在线阅读 下载PDF
基于AVMD的非线性经颅电刺激伪迹去除方法 被引量:1
11
作者 陈妮 范泽平 +1 位作者 曹欣燃 覃玉荣 《电子测量与仪器学报》 CSCD 北大核心 2022年第6期30-41,共12页
经颅交流电刺激(transcranial alternating current stimulation,tACS)是一种应用广泛的无创脑刺激方法。由于非线性tACS伪迹的干扰,很难直接获取刺激时神经电活动的真实情况。为此,提出一种自适应变分模式分解(adaptive variational mo... 经颅交流电刺激(transcranial alternating current stimulation,tACS)是一种应用广泛的无创脑刺激方法。由于非线性tACS伪迹的干扰,很难直接获取刺激时神经电活动的真实情况。为此,提出一种自适应变分模式分解(adaptive variational mode decomposition,AVMD)方法用于去除非线性tACS伪迹。该方法利用希尔伯特变换(Hilbert transform,HT)提取伪迹包络,然后利用窗口傅里叶变换(window Fourier transform,WFT)确定VMD分解的模态数。再利用VMD分解原始数据得到多个本征模态信号。最后根据各模态信号的幅度特征重构真实脑电成分。在模拟数据和公开实验数据上测试AVMD方法的性能,分别采用重构脑电与真实脑电之间的相关系数(模拟数据)以及重构脑电和sham脑电统计特征的平均绝对误差(实验数据)进行方法性能评价。结果表明,对于模拟数据,在调幅深度m_(a)∈[0.001,0.01]、相位调制深度m_(p)∈[0.001,0.01]和刺激频率f_(ani)∈[10,100]的条件下,重构脑电和真实脑电的平均相关系数分别为0.9885、0.8935和0.9484。对于实验数据,重构脑电和sham脑电之间统计特征的平均绝对误差在刺激频率为11 Hz时分别为0.9896(峰度)、2.9918(均方根幅度)、0.1751(样本熵),在刺激频率为62 Hz时为0.9407(峰度)、2.4731(均方根幅度)和0.0841(样本熵)。与移动叠加平均法(superposition of moving averages,SMA)、自适应滤波法(adaptive filtering,AF)和经验模态分解法(empirical mode decomposition,EMD)相比,AVMD方法表现出更稳定更好的非线性tACS伪迹去除性能。该方法的提出为闭环tACS刺激仪器的开发提供支持。 展开更多
关键词 经颅交流电刺激 非线性伪迹 模态分解 脑电
在线阅读 下载PDF
快速Hoyer谱图及VNCMD的变转频滚动轴承故障诊断 被引量:2
12
作者 石文杰 温广瑞 +2 位作者 黄鑫 周桥 包渝锋 《振动.测试与诊断》 EI CSCD 北大核心 2022年第6期1076-1083,1240,1241,共10页
针对变转频情况下滚动轴承振动信号出现频谱混叠现象而无法直接提取故障特征频率的问题,提出一种基于快速Hoyer谱图及改进变分非线性调频模态分解(variational nonlinear chirp mode decomposition,简称VNCMD)的变转频轴承故障诊断方法... 针对变转频情况下滚动轴承振动信号出现频谱混叠现象而无法直接提取故障特征频率的问题,提出一种基于快速Hoyer谱图及改进变分非线性调频模态分解(variational nonlinear chirp mode decomposition,简称VNCMD)的变转频轴承故障诊断方法。首先,采用快速Hoyer谱图确定轴承故障冲击所处的共振频带,对信号进行带通滤波提取轴承故障冲击成分并与低通滤波后的信号进行融合;其次,通过多分量协同转频估计方法对转频及轴承故障特征频率脊线进行估计;最后,将估计的脊线作为VNCMD的输入参数,提取转频及轴承故障冲击成分,并通过阶次分析确定轴承的故障类型。相较于集合经验模态分解(ensemble empirical mode decomposition,简称EEMD),所提方法可以获得更加精确的时频脊线,并通过信号分解得到正确的分量。仿真信号和实验信号均表明所提方法的有效性。 展开更多
关键词 非线性调频模态分解 转频 脊线提取 滚动轴承 故障诊断
在线阅读 下载PDF
基于VMD和DBN的非线性结构模型参数识别 被引量:1
13
作者 莫叶 王佐才 +1 位作者 丁雅杰 袁子青 《振动与冲击》 EI CSCD 北大核心 2022年第9期136-143,共8页
为解决现有的非线性结构模型参数识别方法面临优化过程复杂的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和深度置信网络(deep belief network,DBN)的非线性结构模型参数识别方法。首先,利用VMD和希尔伯特变换(... 为解决现有的非线性结构模型参数识别方法面临优化过程复杂的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和深度置信网络(deep belief network,DBN)的非线性结构模型参数识别方法。首先,利用VMD和希尔伯特变换(Hilbert transform,HT)识别振动响应的瞬时参数;将瞬时参数进行主成分分析后作为输入,非线性模型参数作为输出;然后,利用DBN拟合两者之间的非线性映射关系;最后,将实测振动响应的瞬时参数进行主成分分析,输入训练好的DBN可直接识别修正后的非线性模型参数。通过对两个不同非线性类型的双自由度模型和一个复杂框架模型在地震作用下的数值模拟,与高压输电结构的振动台试验,验证了该方法的有效性。数值与试验结果表明,所提方法具有较高的计算效率和良好的抗噪性。 展开更多
关键词 非线性结构模型 参数识别 模态分解(VMD) 深度置信网络(DBN) 振动响应 瞬时参数
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
14
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 模态分解
在线阅读 下载PDF
VNCMD结合Birge-Massart阈值降噪的航空发动机转子故障诊断 被引量:3
15
作者 梁春辉 刘晓波 《机械设计与制造》 北大核心 2023年第4期201-205,共5页
针对传统算法难以准确提取强背景噪声下航空发动机转子系统微弱故障特征的问题,提出了变分非线性调频模态分解(VNCMD)结合Birge-Massart阈值降噪的航空发动机转子故障诊断方法。首先利用VNCMD对转子故障信号进行分解,根据峭度值及相关... 针对传统算法难以准确提取强背景噪声下航空发动机转子系统微弱故障特征的问题,提出了变分非线性调频模态分解(VNCMD)结合Birge-Massart阈值降噪的航空发动机转子故障诊断方法。首先利用VNCMD对转子故障信号进行分解,根据峭度值及相关系数准则筛选有效信号分量,然后采用Birge-Massart阈值降噪方法对该信号分量进行降噪处理,最后对降噪后的信号进行包络解调,提取出转子故障特征信息。并通过对比经验模态分解(EMD)结合Birge-Massart阈值降噪的方法的实验结果,结果表明:该方法能够有效提升转子系统故障信息提取能力,实现转子系统故障更有效的诊断。 展开更多
关键词 非线性调频模态分解 Birge-Massart阈值降噪 转子系统 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部