期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
基于GRU门控循环单元的火电AGC数据建模及应用 被引量:1
1
作者 董建宁 张淇钧 +5 位作者 陈衡 冯福媛 潘佩媛 徐钢 王修彦 刘彤 《洁净煤技术》 CAS CSCD 北大核心 2024年第S01期406-413,共8页
为响应国家“双碳”目标,提高火电机组的运行灵活性,使用数学模型或仿真软件对火电AGC变负荷过程进行分析研究。而深度学习作为最火热的研究方法之一,将其应用于传统火电机组的大量数据集,可快速、轻便构建更具针对性和准确性的火电机组... 为响应国家“双碳”目标,提高火电机组的运行灵活性,使用数学模型或仿真软件对火电AGC变负荷过程进行分析研究。而深度学习作为最火热的研究方法之一,将其应用于传统火电机组的大量数据集,可快速、轻便构建更具针对性和准确性的火电机组AGC变负荷数据模型,对火电机组动态性能进行分析优化。对比不同循环神经网络框架,选择表现最优的GRU门控循环单元对火电机组变负荷过程进行数据建模,并通过遍历法提高模型精度,并结合自身数据集和物理仿真模型进行数据模型的多重验证。结果表明,基于门控循环单元搭建的数据模型可模拟火电机组在实际变负荷过程中的运行状况,并可模拟不同负荷指令组下的AGC变负荷过程,从而对最佳负荷指令组进行优化。根据模拟结果,在机组75%~100%THA升负荷过程中,调节精度提高了28.4%,在100%~75%THA降负荷过程中,调节精度提高了17.8%。 展开更多
关键词 自动发电控制 深度学习 门控循环单元 数据模型 负荷指令
在线阅读 下载PDF
基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型 被引量:3
2
作者 殷礼胜 刘攀 +3 位作者 孙双晨 吴洋洋 施成 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4499-4508,共10页
该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞... 该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞翼问题,通过改进CEEMD算法将交通流量序列分解为体现路网交通趋势性、周期性及随机性的本征模态函数(IMF)分量,有效提取了其中的先验特征;随后,利用BiGRU网络挖掘交通流量序列中的时序相关性特征,为避免局部最优,并提高麻雀搜索算法(SSA)全局搜索及局部开发能力,采用ISSA对BiGRU网络权值参数迭代择优。实验结果表明,该组合预测模型中各组件对提高预测精度均起到正向作用,同时在不同交通流量数据集下的预测性能较对比算法均更优,展现了精准、快速的预测表现以及良好的泛化能力。 展开更多
关键词 短时交通流预测 互补集合经验模态分解 麻雀搜索算法 双向门控循环单元 边界局部特征延拓
在线阅读 下载PDF
基于多源特征和双向门控循环单元的抗高血压肽识别
3
作者 贺兴时 李锦 梁芸芸 《西安工程大学学报》 CAS 2023年第3期109-114,123,共7页
为了开发快速、高效和智能的抗高血压肽(anti-hypertensive peptides,AHTPs)识别工具,针对AHTPs的识别,构建基于多源特征和深度学习的识别模型。利用新增强分组氨基酸组分(novel enhanced grouped amino acid composition,NEGAAC)、约... 为了开发快速、高效和智能的抗高血压肽(anti-hypertensive peptides,AHTPs)识别工具,针对AHTPs的识别,构建基于多源特征和深度学习的识别模型。利用新增强分组氨基酸组分(novel enhanced grouped amino acid composition,NEGAAC)、约简的二肽组分(reduced dipeptide composition,RDPC)、二肽频率与预期平均值之间的偏差(dipeptide deviation from expected mean,DDE)、氨基酸物理化学性质的距离变换(amino acid physicochemical properties-based distance transformation,AAP-DT)和BLOSUM62编码对肽序列进行特征提取。采用双向门控循环单元(bidirectional gated recurrent units,BiGRU)对蛋白质特征进行深度学习,进而有效识别AHTPs。在10-折交叉验证下,基于多源特征和深度学习的识别模型在基准数据集和独立数据集上的识别精度达到96.78%和98.72%。 展开更多
关键词 抗高血压肽 多源特征 深度学习 双向门控循环单元 蛋白质
在线阅读 下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:15
4
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
在线阅读 下载PDF
基于双向门控循环单元神经网络的间歇过程最终产品质量预测 被引量:4
5
作者 骆楠 祁佳康 罗娜 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第6期807-814,共8页
从具有共性的间歇过程终点质量预测问题出发,针对生产过程的时间序列特性进行分析,提出了一种基于双向门控循环单元神经网络的预测模型,对不等长间歇过程进行最终产品质量预测。结合实际生产中对预测值的要求,构建了适应间歇过程的损失... 从具有共性的间歇过程终点质量预测问题出发,针对生产过程的时间序列特性进行分析,提出了一种基于双向门控循环单元神经网络的预测模型,对不等长间歇过程进行最终产品质量预测。结合实际生产中对预测值的要求,构建了适应间歇过程的损失函数,使模型在保证预测精度的前提下满足预测要求,从而获得更大的生产效益。将使用不同损失函数的双向门控循环(GRU)单元神经网络与多向偏最小二乘(MPLS)、神经网络(NN)、支持向量回归(SVR)以及门控循环单元神经网络的预测结果进行实验对比,结果表明双向门控循环单元神经网络具有更强的适用性和更高的准确性。 展开更多
关键词 间歇过程 质量预测 双向门控循环单元 损失函数 时间序列
在线阅读 下载PDF
采用门控循环神经网络的核工业管道损伤识别方法
6
作者 蒋琪 张望 +1 位作者 屈文忠 肖黎 《振动与冲击》 EI CSCD 北大核心 2024年第24期48-58,共11页
超声导波检测技术具有效率高、成本低、检测方便等优点,广泛应用于管道的损伤检测。但超声导波在管道中的传播以及压电传感器灵敏度受温度和压力载荷等环境及工况的影响,严重干扰了损伤信息的提取和识别。由此,该文提出了一种基于粒子... 超声导波检测技术具有效率高、成本低、检测方便等优点,广泛应用于管道的损伤检测。但超声导波在管道中的传播以及压电传感器灵敏度受温度和压力载荷等环境及工况的影响,严重干扰了损伤信息的提取和识别。由此,该文提出了一种基于粒子群优化-双向门控循环单元-注意力机制模型的机器学习的导波管道损伤识别方法。此模型通过在原始超声导波数据与管道状态之间建立映射关系,并加强特征提取层对损伤特征的识别能力,有效避免环境干扰并准确识别出真实的损伤信号。以某核工业循环水冷却管道试验台架为试验对象,进行温度压力变化工况下的管道损伤识别试验,通过试验和理论分析验证了该模型能有效实现管道损伤识别,且识别准确率优于门控循环网络、长短时记忆、双向门控循环网络等其他数据驱动模型,证实了该文所提方法的有效性和优越性。 展开更多
关键词 核工业管道 损伤识别 粒子群优化 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于WOA-GRU模型的煤泥浮选智能控制研究
7
作者 窦治衡 王然风 +3 位作者 秦新凯 柴宇青 李品钰 刘舒通 《工矿自动化》 北大核心 2025年第4期153-159,168,共8页
由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存... 由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存在的时滞特性,通过WOA对GRU网络参数进行优化,进一步提高了模型的辨识精度。考虑到现有选煤厂普遍使用单输入单输出的PID控制器,难以应对多输入多输出系统,将模型预测控制(MPC)引入实际生产现场,以更好地解决浮选过程中多变量耦合问题。基于代池坝选煤厂的生产数据,分别对WOA-GRU和NARX 2种辨识模型进行了MPC仿真,结果表明,WOA-GRU模型的拟合精度较NARX模型高51.84%,引入MPC后,WOA-GRU模型可将灰分波动控制在设定值的±4%内,优于NARX模型。现场试运行结果表明,灰分波动幅度位于5%~10%的数据较引入MPC前占比减少了10.8%,大于10%的数据占比则减少了3.9%,说明WAO-GRU模型不仅具备更高的精度与稳定性,而且能够减小灰分的波动,为煤泥浮选过程的智能化控制与应用提供了参考。 展开更多
关键词 煤泥浮选 系统辨识 模型预测控制 鲸鱼优化算法 门控循环单元 煤泥灰分
在线阅读 下载PDF
基于双向GRU和注意力机制的叠前地震孔隙度预测方法 被引量:1
8
作者 杨菲 刘洋 +1 位作者 常锁亮 陈桂 《石油物探》 CSCD 北大核心 2024年第3期598-609,共12页
岩石孔隙度是表征储层的重要参数之一,对孔隙度进行准确预测有利于更精细地刻画高孔高渗储层位置。然而地震弹性参数与孔隙度之间的关系较为复杂,给储层孔隙度的准确预测带来一定困难。深度学习为地震准确预测孔隙度提供了新思路。提出... 岩石孔隙度是表征储层的重要参数之一,对孔隙度进行准确预测有利于更精细地刻画高孔高渗储层位置。然而地震弹性参数与孔隙度之间的关系较为复杂,给储层孔隙度的准确预测带来一定困难。深度学习为地震准确预测孔隙度提供了新思路。提出了一种基于双向门控循环单元神经网络(GRU)和注意力机制(BiGRU-Attention)的叠前地震孔隙度预测方法,该方法利用双向GRU实现信息的双向传播并加入Attention机制放大关键信息,将叠前同时反演得到的纵波速度和密度信息作为输入,以测井孔隙度值作为标签来训练和测试BiGRU-Attention网络,建立起地震弹性参数与孔隙度之间的复杂映射关系,进而实现孔隙度的准确预测。实际数据测试结果表明,相比于常规多元线性回归方法(MLR)、密集神经网络(DNN)和门控循环单元神经网络(GRU)等预测方法,BiGRU-Attention网络预测方法在盲井测试中预测精度更高。将该方法应用于某实际三维工区地震数据预测的孔隙度值与测井孔隙度值匹配良好,说明该方法具有较好的实用价值。 展开更多
关键词 深度学习 注意力机制 双向门控循环单元神经网络 孔隙度预测 储层参数反演
在线阅读 下载PDF
基于Online-GRU信道预测的星上自适应功率控制方法 被引量:2
9
作者 施文军 朱立东 《太赫兹科学与电子信息学报》 2024年第3期261-268,共8页
针对传统卫星功率控制方法存在资源浪费、时延长的问题,提出一种基于在线-门控循环单元(Online-GRU)信道预测的星上自适应功率控制方法,通过在线训练更新网络参数来解决离线预测算法存在的累积误差的问题。仿真结果表明,提出的在线训练... 针对传统卫星功率控制方法存在资源浪费、时延长的问题,提出一种基于在线-门控循环单元(Online-GRU)信道预测的星上自适应功率控制方法,通过在线训练更新网络参数来解决离线预测算法存在的累积误差的问题。仿真结果表明,提出的在线训练算法比离线算法预测精确度提升了38.30%,相比在线-长短期记忆网络(Online-LSTM)节约了63.21%的训练时间;提出的自适应功率控制方法比固定发射功率的方法节约了55.74%的发射功率;同时,相比基于地面定时反馈信道状态的自适应功率控制方法具备更好的鲁棒性。 展开更多
关键词 星上自适应功率控制 在线训练 在线-门控循环单元 信道预测
在线阅读 下载PDF
面向样本不平衡的网络入侵检测方法
10
作者 王肖 李大鹏 《无线通信技术》 2025年第1期6-12,共7页
针对当前网络入侵检测方法特征信息提取不足、网络异常流量样本数量不平衡导致入侵检测准确率低的问题,提出一种结合卷积神经网络(Convolutional Neural Network,CNN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)与... 针对当前网络入侵检测方法特征信息提取不足、网络异常流量样本数量不平衡导致入侵检测准确率低的问题,提出一种结合卷积神经网络(Convolutional Neural Network,CNN)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)与注意力机制的网络入侵检测方法。首先,对网络流量数据进行数据预处理;然后,通过一维卷积神经网络提取其局部特征,双向门控循环单元提取其长距离序列特征;最后,融合注意力机制使关键信息得到更好的表达。此外,引入Equalization Loss v2(EQL v2)作为损失函数对少数类样本进行加权,以解决网络流量样本不平衡的问题。在CICIDS2017数据集上的结果表明,所提方法能够有效改善原始数据集中的样本不平衡问题,提高对网络入侵的检测准确率和异常流量样本的检测能力。 展开更多
关键词 网络入侵检测 样本不平衡 卷积神经网络 双向门控循环控制单元 注意力机制
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测
11
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
采用全局健康因子和残差模型的锂离子电池健康状态估计
12
作者 胡循泉 耿莉敏 +5 位作者 舒俊豪 张文博 巫春玲 尉小龙 黄东 陈昊 《西安交通大学学报》 北大核心 2025年第4期105-117,共13页
为准确估计锂离子电池的健康状态(SOH),提出了一种卷积神经网络-残差网络-双向门控循环单元-注意力机制(CNN-Residual-BiGRU-Attention)模型和微调估计方法。首先,采用分段近似聚合算法对电池容量增量和恒流充电曲线进行降维,构建全局... 为准确估计锂离子电池的健康状态(SOH),提出了一种卷积神经网络-残差网络-双向门控循环单元-注意力机制(CNN-Residual-BiGRU-Attention)模型和微调估计方法。首先,采用分段近似聚合算法对电池容量增量和恒流充电曲线进行降维,构建全局健康因子;接着,利用卷积神经网络提取全局健康因子时序特征,通过注意力机制突出强相关特征,并引入残差网络保持信息完整性;最后,通过改进人工蜂群算法对模型超参数寻优,提升模型SOH估计精度。采用美国国家航空航天局和牛津大学锂离子电池数据集进行精度验证,结果表明:利用提出的微调估计方法,即使精度较差的卷积神经-长短期记忆模型,SOH估计结果的平均绝对误差e_( MAE)、平均绝对百分比误差e_( MAPE)和均方根误差e RMSE也均在2%以内;相较于卷积神经网络-双向门控循环单元-注意力机制模型,采用CNN-Residual-BiGRU-Attention模型对训练集比例为30%的同一电池SOH进行估计,得到的e_( MAE)、e_( MAPE)和e RMSE分别降低了41.86%、44.35%、42.11%;对训练集比例为40%的同类电池SOH进行估计,得到的e_( MAE)、e_( MAPE)和e RMSE分别降低了45.51%、45.93%、40.10%。该研究结果可为低比例训练集条件下准确估计锂离子电池的SOH提供理论参考。 展开更多
关键词 锂离子电池 健康状态估计 全局健康因子 改进人工蜂群算法 残差 双向门控循环单元
在线阅读 下载PDF
面向目的地预测的层次化空间嵌入BiGRU模型
13
作者 周翔宇 刘毅志 +2 位作者 赵肄江 廖祝华 张德城 《浙江大学学报(工学版)》 北大核心 2025年第6期1211-1218,共8页
结合空间嵌入和神经网络目的地的预测方法在预测精度和时间性能之间存在权衡,并且面临长期依赖的问题.为此,提出面向目的地预测的层次化空间嵌入双向门控循环单元(HSE-BiGRU)模型.该模型采用层次化架构:第1层通过粗粒度网格嵌入技术,将... 结合空间嵌入和神经网络目的地的预测方法在预测精度和时间性能之间存在权衡,并且面临长期依赖的问题.为此,提出面向目的地预测的层次化空间嵌入双向门控循环单元(HSE-BiGRU)模型.该模型采用层次化架构:第1层通过粗粒度网格嵌入技术,将GPS轨迹数据转换为网格嵌入序列,利用带注意力的BiGRU网络捕获网格嵌入序列中的时空依赖关系,预测目的地所在的网格区域;第2层采用四叉树嵌入技术将网格区域内的轨迹数据转换为四叉树嵌入序列,运用带注意力的BiGRU网络聚焦关键位置节点以提取四叉树嵌入序列的运动特征;结合2层提取的特征信息精准预测目的地.使用波尔图市的出租车数据集进行性能评估,结果表明,所提方法在预测精度和时间性能上均优于CNN、T-CONV、CNN-LSTM等基线模型. 展开更多
关键词 目的地预测 层次化架构 网格嵌入 四叉树嵌入 双向门控循环单元(BiGRU) 注意力机制
在线阅读 下载PDF
基于二次分解和BiGRU的超短期光伏发电功率预测
14
作者 韩博 李长青 +4 位作者 刘卫亮 刘帅 刘长良 徐家豪 王昕 《动力工程学报》 北大核心 2025年第1期62-69,79,共9页
针对超短期光伏发电功率预测,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)-变分模态分解(VMD)-双向门控循环单元(BiGRU)的混合预测模型。采用CEEMDAN对光伏发电功率信号进行分解,通过样本熵和K-means方法对分解后信号进行聚类重... 针对超短期光伏发电功率预测,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)-变分模态分解(VMD)-双向门控循环单元(BiGRU)的混合预测模型。采用CEEMDAN对光伏发电功率信号进行分解,通过样本熵和K-means方法对分解后信号进行聚类重构;再利用VMD对复杂信号进行二次分解,以削弱信号的非平稳性;将分解后各信号分量作为BiGRU模型的输入进行训练、验证和预测,然后线性叠加各信号分量预测结果,得到最终预测结果。结果表明:混合预测模型的预测精度高于单一模型,验证了混合预测模型的有效性;通过对比典型天气情况下的预测效果及各项评价指标,验证了所提出方法的通用性。 展开更多
关键词 光伏发电 功率预测 二次分解 样本熵 双向门控循环单元
在线阅读 下载PDF
基于BiGRU的水下可见光通信调制格式识别研究
15
作者 高文笛 汪昀楷 +2 位作者 徐迟 徐增熠 迟楠 《光通信研究》 北大核心 2025年第2期26-32,共7页
【目的】水下可见光通信(UVLC)作为替代传统声波通信的前沿技术,以其高速率、大带宽、低延迟和高安全性获得了广泛关注,但同时也面临着水下信道环境复杂、信号功率衰减和光电器件不理想等因素导致的非线性效应等挑战。这些低信噪比(SNR... 【目的】水下可见光通信(UVLC)作为替代传统声波通信的前沿技术,以其高速率、大带宽、低延迟和高安全性获得了广泛关注,但同时也面临着水下信道环境复杂、信号功率衰减和光电器件不理想等因素导致的非线性效应等挑战。这些低信噪比(SNR)和非线性效应引起的信号劣化,会导致接收端难以正确识别并解调出原信号,而正确识别出信号调制格式才能为后续使用其他算法,如非线性补偿和频率偏移补偿,来提升通信性能打下基础。文章旨在解决UVLC系统中调制格式识别(MFR)的性能限制问题,特别关注在复杂水下环境中提高识别准确率和系统鲁棒性。【方法】针对以上问题,文章提出了一种结合双向门控循环单元(BiGRU)和坐标变换的创新MFR算法。文章所提算法充分利用BiGRU在时序数据处理上的优势和坐标变换的高效性,有效提取信号特征,显著提高了在水下环境中MFR的准确性。【结果】实验结果显示,在不同发射电压条件下,该算法对2正交振幅调制(QAM)、4QAM、8QAM、8幅度相移键控(APSK)、16QAM、16APSK、32QAM、32APSK、64QAM和64APSK共10种QAM和APSK信号调制格式的识别准确率均超过96%,训练速度提高了1倍,并且在低SNR和非线性失真环境下鲁棒性显著。【结论】文章所提算法显著提升了UVLC系统在复杂水下环境中的MFR性能,具有重要的应用价值和技术创新点,为未来水下高速通信技术的发展奠定了基础。 展开更多
关键词 水下可见光通信 调制格式识别 双向门控循环单元 非线性失真 信号特征提取
在线阅读 下载PDF
一种融合时空特征的物联网入侵检测方法
16
作者 翁铜铜 矫桂娥 张文俊 《信息安全研究》 北大核心 2025年第3期241-248,共8页
针对不平衡的物联网流量数据集中攻击样本不足且类别较多降低了检测模型的分类准确率和泛化能力等问题,提出一种融合时空特征的物联网入侵检测方法(BGAREU).首先对数据进行规范化处理,并采用SMOTEENN方法改善训练样本的数据分布;然后通... 针对不平衡的物联网流量数据集中攻击样本不足且类别较多降低了检测模型的分类准确率和泛化能力等问题,提出一种融合时空特征的物联网入侵检测方法(BGAREU).首先对数据进行规范化处理,并采用SMOTEENN方法改善训练样本的数据分布;然后通过双向门控循环单元(BiGRU)和多头注意力(multi-head attention)提取时序特征和全局信息,并结合ResNext网络和U-Net网络构建多尺度的空间特征提取网络,再将高效通道注意力(ECA-Net)加入残差单元中以增强局部表征能力;最后将融合的特征输入Softmax分类器进行多分类.实验表明,在物联网流量数据集UNSW-NB15,NSL-KDD,WSN-DS上与其他模型相比,该模型在各项指标上均有2%以上的提升.此外,还通过对比多种注意力机制验证了ECA-Net具有更强的表征能力,并探索了多头注意力中不同数量的注意力头对模型性能的影响. 展开更多
关键词 入侵检测 双向门控循环单元 多头注意力 多尺度特征提取 高效通道注意力
在线阅读 下载PDF
基于链路质量预测的UANET改进蚁群路由算法
17
作者 曾囿钧 周劼 +3 位作者 刘友江 曹韬 杨大龙 刘羽 《太赫兹科学与电子信息学报》 2025年第3期240-246,共7页
无人机自组网(UANET)可通过多跳转发增大通信范围,其中路由算法承担数据包传输路径规划的任务。针对高动态网络下,无人机定位偏差带来的定向天线波束对不准所造成的增益衰减问题,提出一种基于链路质量预测的蚁群路由算法(LQP-ACO)。该... 无人机自组网(UANET)可通过多跳转发增大通信范围,其中路由算法承担数据包传输路径规划的任务。针对高动态网络下,无人机定位偏差带来的定向天线波束对不准所造成的增益衰减问题,提出一种基于链路质量预测的蚁群路由算法(LQP-ACO)。该算法利用双向门控循环单元-全连接神经网络(BiGRU-FCNN)预测无人机节点之间的链路质量,然后根据预测的链路质量,利用蚁群算法寻找最优的2条路径进行业务数据传输。仿真结果表明,提出的路由算法相较于传统的Dijkstra算法,在随机路点(RWP)及随机游走(RW)移动模型下,丢包率分别降低了2.75%、4.5%。 展开更多
关键词 无人机自组网路由 蚁群优化算法 双向门控循环单元 全连接神经网络(FCNN)
在线阅读 下载PDF
基于MSRC-BiGRU-SA的人体活动识别
18
作者 芦平 于增辉 华国环 《中国电子科学研究院学报》 2025年第1期25-32,共8页
针对目前基于可穿戴传感器的复杂人体活动分类算法大多忽略对多尺度特征的提取和关键特征捕捉的问题,文中提出一种多尺度残差卷积网络叠加双向门控循环单元和自注意力机制(MSRC-BiGRU-SA)的模型。首先,通过MSRC模块充分提取传感器数据... 针对目前基于可穿戴传感器的复杂人体活动分类算法大多忽略对多尺度特征的提取和关键特征捕捉的问题,文中提出一种多尺度残差卷积网络叠加双向门控循环单元和自注意力机制(MSRC-BiGRU-SA)的模型。首先,通过MSRC模块充分提取传感器数据的多尺度空间和时间特征并有效融合原始数据的特征信息,增强特征的表达能力和鲁棒性;其次,利用BiGRU模块充分捕捉时间序列的前后依赖关系;最后,通过SA模块增强模型对复杂活动关键特征的捕捉能力以提升分类性能。实验结果表明,在公开数据集上,该模型对复杂活动的分类准确率达到97.50%,相较于原始CNN-BiGRU模型提升了5.77%,与现有先进模型相比,具有更好的识别效果。 展开更多
关键词 复杂人体活动识别 卷积神经网络 双向门控循环单元 可穿戴传感器 深度学习
在线阅读 下载PDF
基于SSA-VMD-CNN-BiGUR的矿区负荷预测
19
作者 邱岳 咸晓雨 +1 位作者 于向东 马永强 《能源与环保》 2025年第2期209-214,共6页
为提升矿区负荷预测精度,提出一种基于麻雀优化算法(Sparrow Search Algorithm,SSA)、变分模态分解(Variational Mode Decomposition,VMD)、卷积神经网络(Convolution Neural Networks,CNN)及双向门控循环单元(Bidirectional Gating Rec... 为提升矿区负荷预测精度,提出一种基于麻雀优化算法(Sparrow Search Algorithm,SSA)、变分模态分解(Variational Mode Decomposition,VMD)、卷积神经网络(Convolution Neural Networks,CNN)及双向门控循环单元(Bidirectional Gating Recurrent Unit,BiGRU)的矿区负荷预测模型。首先,通过麻雀优化算法基于样本熵对变分模态分解的最佳影响参数进行迭代寻优,将矿区负荷序列分解为稳定的负荷序列。其次,将得到稳定的负荷分量通过卷积循环网络对天气、电价等历史负荷影响数据进行特征挖掘,并构建BiGRU预测模型对稳定负荷分量进行预测,将所得预测结果重构得到最终的预测结果。最后,对某矿区真实用电负荷数据进行算例分析,采用3个评价指标与目前主流预测模型进行比较。预测效果更准确,验证了所提模型的准确性。 展开更多
关键词 麻雀优化算法 变分模态分解 矿区负荷预测 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
层级特征驱动的海冰范围预测算法
20
作者 高源 侯春萍 +2 位作者 李梦龙 马丹 杨阳 《现代电子技术》 北大核心 2025年第3期97-103,共7页
北极海冰范围与地球生态系统和人类生产生活息息相关,因此准确预测北极海冰范围具有重大意义。针对现有机器学习方法预测北极海冰范围存在特征提取层次单薄导致海冰范围整体预测精度受限,忽略特征间重要性差异导致融化季节海冰范围预测... 北极海冰范围与地球生态系统和人类生产生活息息相关,因此准确预测北极海冰范围具有重大意义。针对现有机器学习方法预测北极海冰范围存在特征提取层次单薄导致海冰范围整体预测精度受限,忽略特征间重要性差异导致融化季节海冰范围预测精度低等问题,文中提出一种层级特征驱动的海冰范围预测算法。该算法结合了局部特征提取模块与双向时序特征提取模块,以捕捉局部特征与长期复杂的双向时序特征。这种多层级特征提取策略能够显著提升整体预测精度。此外,算法还引入了特征重点捕捉机制,通过赋予关键特征更高权重,有效提高了融化季节的预测精度。实验结果表明,与现有算法相比,所提算法在整体预测精度上达到了99.44%。特别是在融化季节,预测精度显著提升,充分证明了该算法的有效性和先进性。 展开更多
关键词 卫星遥感 海冰范围 时间序列预测 注意力机制 双向门控循环单元 深度学习
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部