期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
1
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于双向门控变分编码回归网络的涡扇发动机剩余寿命预测
2
作者 徐浩 王波 +2 位作者 张猛 杨文龙 汪超 《计算机集成制造系统》 北大核心 2025年第2期616-626,共11页
针对涡扇发动机运行工况复杂,难以提取高维度、多参数监测数据的退化时序特征,从而影响模型预测性能的问题,提出一种基于双向门控变分编码回归网络的剩余使用寿命预测模型。首先在变分编码器(VAE)网络的编码端引入双向门控循环单元网络(... 针对涡扇发动机运行工况复杂,难以提取高维度、多参数监测数据的退化时序特征,从而影响模型预测性能的问题,提出一种基于双向门控变分编码回归网络的剩余使用寿命预测模型。首先在变分编码器(VAE)网络的编码端引入双向门控循环单元网络(BiGRU),充分挖掘多维度退化数据中的隐藏时序特征;其次重构变分编码器模型的解码器为回归网络,利用变分编码器潜在空间中的退化特征训练回归网络,并在损失函数中联合KL散度和回归误差来提高剩余使用寿命预测精度。为验证所提预测模型的高效性,在公开涡扇发动机数据集上与其他预测模型进行对比,验证了所提模型具有更优的预测精度。 展开更多
关键词 剩余寿命预测 变分编码器 双向门控循环单元网络 回归网络 涡扇发动机
在线阅读 下载PDF
基于双向门控循环单元的脱硫系统pH预测模型
3
作者 高钾 田雪峰 +2 位作者 彭献永 蒋甲丁 徐敏 《科学技术与工程》 北大核心 2025年第13期5535-5543,共9页
针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最... 针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最大信息系数分析得出13个特征值为输入变量,pH为输出变量,并建立浆液pH模型;最后,运行模型,并对结果进行评价。研究结果显示,与长短期记忆和门控循环相比,所选用的数学模型的平均绝对误差分别下降了11.95%、24.92%,均方根误差分别下降了10.64%、19.49%,决定系数分别提高了1.79%、3.08%。表明基于双向门控循环单元的pH预测模型具有较高的精确度和稳定性,具有工程应用价值,为现有脱硫塔pH预测模型提供了工程参考。 展开更多
关键词 石灰石-石膏湿法烟气脱硫系统 双向门控循环单元神经网络 预测模型 浆液pH
在线阅读 下载PDF
基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测 被引量:19
4
作者 方娜 李俊晓 +1 位作者 陈浩 李新新 《现代电力》 北大核心 2022年第4期441-448,共8页
为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple line... 为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。 展开更多
关键词 变分模态分解 卷积神经网络 双向门控循环单元 多元线性回归 负荷预测
在线阅读 下载PDF
结合双向注意力机制的网络欺凌检测
5
作者 周杭霞 厉贤斌 +1 位作者 崔晨 许瑞旭 《计算机工程与设计》 北大核心 2025年第2期523-529,共7页
针对网络欺凌文本内容嘈杂、文本特征交互不足的问题,提出一种结合双向注意力机制的网络欺凌检测模型。多尺度门控扩张因果卷积(MGDC)提取文本不同感受视野下的局部特征;双向门控循环单元(BiGRU)提取全局上下文语义特征;利用双向注意力... 针对网络欺凌文本内容嘈杂、文本特征交互不足的问题,提出一种结合双向注意力机制的网络欺凌检测模型。多尺度门控扩张因果卷积(MGDC)提取文本不同感受视野下的局部特征;双向门控循环单元(BiGRU)提取全局上下文语义特征;利用双向注意力机制学习全局上下文语义特征和局部特征之间的交互作用,弥补各自特征之间的不足。通过胶囊网络进行深层次的特征提取。通过实验验证了该方法在网络欺凌文本检测中的准确性和有效性。 展开更多
关键词 网络欺凌 社交媒体 多尺度门控扩张因果卷积 双向注意力机制 胶囊网络 双向门控循环单元 特征提取
在线阅读 下载PDF
基于SSA-BiGRU-CNN神经网络和波动数据修正的电动汽车短期负荷预测模型
6
作者 张钰声 曹敏 +1 位作者 雷宇 李龙 《电网与清洁能源》 北大核心 2025年第2期67-74,共8页
为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network... 为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network,CNN)的电动汽车短期负荷预测模型。构建BiGRU-CNN模型,并应用麻雀搜索算法(sparrowsearch algorithm,SSA)对BiGRU神经网络参数进行优化;利用BiGRU神经网络充分学习历史负荷数据的前、后向联系,采用CNN对历史负荷数据进行局部优化,并通过全连接层进行预测;考虑到天气数据内部规律性不强,采用BiGRU-CNN神经网络对天气数据所带来的负荷波动进行误差预测和修正。以陕西某区域电动汽车充电站为例,分别预测预见期为4 h和24 h的电动汽车负荷,实验结果表明,所提模型无论在工作日还是双休日都具有很高的预测精度,验证了所提方法的有效性。 展开更多
关键词 电动汽车 负荷预测 双向门控循环单元 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:17
7
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-bigru) 端到端
在线阅读 下载PDF
基于卷积神经网络和双向门控循环单元网络注意力机制的情感分析 被引量:15
8
作者 张腾 刘新亮 高彦平 《科学技术与工程》 北大核心 2021年第1期269-274,共6页
传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情... 传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情感词自身信息,通过双向门控循环网络模型获取全局特征,对影响句子极性的否定词、转折词和程度副词引入注意力机制实现对这类词的重点关注,提取影响句子极性的重要信息。实验结果表明,该模型与现有相关模型相比,有效提高情感分类的准确率。 展开更多
关键词 深度学习 双向门控循环单元(Bi-GRU) 注意力机制 卷积神经网络 情感分析
在线阅读 下载PDF
基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测 被引量:13
9
作者 林靖皓 秦亮曦 +1 位作者 苏永秀 秦川 《计算机应用》 CSCD 北大核心 2020年第S01期51-55,共5页
针对影响芒果产量的相关气象要素繁多,它们与产量之间的关联关系复杂、难以用数学函数准确地描述的问题,提出一种基于自注意力机制具有长短期记忆功能的双向门控循环单元和卷积神经网络组合(Self-attention CBiGRU)模型。首先,利用CNN... 针对影响芒果产量的相关气象要素繁多,它们与产量之间的关联关系复杂、难以用数学函数准确地描述的问题,提出一种基于自注意力机制具有长短期记忆功能的双向门控循环单元和卷积神经网络组合(Self-attention CBiGRU)模型。首先,利用CNN卷积层(1D CNN)提取局部特征;其次将Self-attention机制用于进一步提取依赖特征,然后双向门控循环单元(BiGRU)会充分考虑年份之间的关联性,学习长期依赖特征;最后,利用广西某地3个气象站所收集到的24个芒果生产周期年份(从前一年第22旬到当年第21旬)每旬9个气象要素及芒果产量数据进行分析建模,建立了芒果产量预测Self-attention C-BiGRU模型。实验结果表明,Self-attention C-BiGRU模型预测的产量与实际产量的均方根误差为10.67,比支持向量回归(SVR)、误差后向传播神经网络(BPNN)、门控循环单元(GRU)、基于注意力机制的双向门控循环单元(BiGRU-Attention)、门控循环单元和卷积神经网络组合模型(GRU-CNN)、双向门控循环单元和卷积神经网络组合模型(C-BiGRU)分别平均降低了37.7%、42.1%、17.6%、4.1%、5.3%和5.9%。Selfattention C-BiGRU模型具有较高的预测准确性,对提升广西芒果产业发展、推进农业信息化有重要意义。 展开更多
关键词 芒果 产量预测 Self-attention 双向门控循环单元 卷积神经网络 循环神经网络
在线阅读 下载PDF
改进一维卷积神经网络与双向门控循环单元的轴承故障诊断研究 被引量:13
10
作者 杨云 丁磊 张昊宇 《机械科学与技术》 CSCD 北大核心 2023年第4期538-545,共8页
针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新... 针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新算法。首先,该方法利用一维卷积神经网络自提取能力进行特征提取,同时设计了一个全局均值池化层替换传统卷积神经网络的全连接层,减少参数数量;其次,引入双向门控循环单元学习特征信号中的时间序列关系;最后,通过支持向量机替换传统CNN中的Softmax层进行故障分类,进一步提高诊断的准确率。实验表明,该方法将诊断的准确率提升至99.8%,并且加快了诊断的速度。通过与其他方法的对比,证明了该方法有着更高的准确率,更快的诊断速度,更好的鲁棒性。 展开更多
关键词 轴承故障诊断 卷积神经网络 双向门控循环单元 支持向量机
在线阅读 下载PDF
融合一维卷积神经网络和双向门控循环单元的APM车辆轮胎径向载荷识别方法 被引量:5
11
作者 曾俊玮 季元进 +3 位作者 任利惠 葛方顺 孙泽良 黄章行 《中国机械工程》 EI CAS CSCD 北大核心 2023年第3期359-368,共10页
针对轮胎载荷直接测量昂贵复杂及传统载荷识别方法精度低、鲁棒性差的现实,提出了一种融合一维卷积神经网络(1D CNN)和双向门控循环单元(BiGRU)的胶轮车辆轮胎径向载荷识别方法。充分考虑轮胎径向载荷数据的先验信息,以车辆振动响应、... 针对轮胎载荷直接测量昂贵复杂及传统载荷识别方法精度低、鲁棒性差的现实,提出了一种融合一维卷积神经网络(1D CNN)和双向门控循环单元(BiGRU)的胶轮车辆轮胎径向载荷识别方法。充分考虑轮胎径向载荷数据的先验信息,以车辆振动响应、车体位姿、运行状态等多源信息构建特征集并经特征选择保留有效的特征子集,构造多时间步输入-单时间步输出的样本用以网络训练。运用1D CNN提取信号的多维度空间特征并输入BiGRU中双向捕获时序特征,得到载荷预测的结果,结合预测精度、泛化性能、鲁棒性能修正理论模型。以APM300型车辆为例进行载荷识别,与传统算法相比,所提方法有效降低了载荷识别的误差,适用于不同运行工况,且能克服不同程度的测量噪声,在工程领域有现实应用价值。 展开更多
关键词 载荷识别 胶轮车辆 一维卷积神经网络 双向门控循环单元
在线阅读 下载PDF
融合CNN-BiGRU和注意力机制的网络入侵检测模型 被引量:14
12
作者 杨晓文 张健 +1 位作者 况立群 庞敏 《信息安全研究》 CSCD 北大核心 2024年第3期202-208,共7页
为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注... 为提高网络入侵检测模型特征提取能力和分类准确率,提出了一种融合双向门控循环单元(CNN-BiGRU)和注意力机制的网络入侵检测模型.使用CNN有效提取流量数据集中的非线性特征;双向门控循环单元(BiGRU)提取数据集中的时序特征,最后融合注意力机制对不同类型流量数据通过加权的方式进行重要程度的区分,从而整体提高该模型特征提取与分类的性能.实验结果表明:其整体精确率比双向长短期记忆网络(BiLSTM)模型提升了2.25%.K折交叉验证结果表明:该模型泛化性能良好,避免了过拟合现象的发生,印证了该模型的有效性与合理性. 展开更多
关键词 网络入侵检测 卷积神经网络 双向门控循环单元 注意力机制 深度学习
在线阅读 下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
13
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
在线阅读 下载PDF
基于WOA-CNN-BiGRU的PEMFC性能衰退预测
14
作者 陈贵升 刘强 许杨松 《电源技术》 北大核心 2025年第4期831-840,共10页
针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影... 针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影响显著的特征,以降低计算复杂度。然后,结合CNN的特征提取能力和BiGRU在处理双向时间依赖性数据上的优势建立CNNBiGRU模型,并通过WOA优化其超参数进一步提升预测的准确性。最后,与传统预测模型进行对比,验证所建模型的优越性。实验结果表明:在训练集占比为60%时,模型在三种不同工况PEMFC老化数据集上的RMSE分别为0.0017、0.0014和0.0110,证明CNN-BiGRU模型具有较高的预测精度以及良好的泛化能力。 展开更多
关键词 PEMFC 性能衰退 鲸鱼优化算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测
15
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
基于ResNet-TSM和BiGRU网络的移动视频感知质量评价模型 被引量:1
16
作者 杜丽娜 杨硕 +2 位作者 卓力 张菁 李嘉锋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期18-26,共9页
考虑到卡顿、质量切换、内容特征等因素对用户体验质量的影响都会直接体现在客户端的失真视频里,提出了一种客户端的移动视频感知质量评价模型。该模型无须对每种影响因素均进行表征和度量,而是基于深度特征提取+回归的思路,直接建立失... 考虑到卡顿、质量切换、内容特征等因素对用户体验质量的影响都会直接体现在客户端的失真视频里,提出了一种客户端的移动视频感知质量评价模型。该模型无须对每种影响因素均进行表征和度量,而是基于深度特征提取+回归的思路,直接建立失真视频与平均意见分数之间的映射模型。首先,构建了ResNet-TSM网络结构,提取失真视频片段的深度时空特征;为了避免维度灾难,采用LargeVis算法对提取的深度特征进行降维,同时提升特征的表达与区分能力。然后,采用双向门控循环单元网络对视频的长时间依赖关系进行建模,得到各视频片段的打分,再利用时间平均池化方法将各片段分数进行聚合,得到整个视频的打分结果。在WaterlooSQoE-Ⅲ和LIVE-NFLX-Ⅱ数据集上的实验结果表明,提出的模型可以获得更高的预测精度。 展开更多
关键词 视频感知质量评价 平均意见分数 卷积神经网络 时间移位模块 双向门控循环单元 深度时空特征
在线阅读 下载PDF
基于MSCNN-BiGRU-Attention的短期电力负荷预测
17
作者 李科 潘庭龙 许德智 《中国电力》 北大核心 2025年第6期10-18,共9页
为解决电力负荷关键特征难以提取的问题,提出一种结合多尺度卷积神经网络-双向门控循环单元-注意力机制(multi-scale convolutional neural network-bi-directional gated recurrent unit-Attention,MSCNN-BiGRU-Attention)的组合模型... 为解决电力负荷关键特征难以提取的问题,提出一种结合多尺度卷积神经网络-双向门控循环单元-注意力机制(multi-scale convolutional neural network-bi-directional gated recurrent unit-Attention,MSCNN-BiGRU-Attention)的组合模型进行短期电力负荷预测。首先,通过Spearman相关系数分析电力负荷数据集的相关性,筛选出相关性较高的特征,构建电力负荷数据集;其次,将数据输入到多尺度卷积神经网络(multi-scale convolutional neural network,MSCNN),对电力负荷数据进行多尺度的时序提取;然后,将提取后的时序特征输入到双向门控循环单元(bi-directional gated recurrent unit,BiGRU)神经网络进行时序预测,并通过注意力(Attention)机制对时序特征进行过滤和筛选;最后,通过全连接层整合输出预测值。以澳大利亚某地区3年的多维电力负荷数据作为数据集,并设置5种对照组模型。同时选用国内南方某地区2年的多维电力负荷数据作为模型验证数据集。结果表明,相较其他模型,MSCNN-BiGRU-Attention组合模型能够取得更好的预测效果,有效解决区域级电力负荷关键特征难以提取的问题。 展开更多
关键词 电力负荷预测 多尺度卷积神经网络 双向门控循环单元 注意力机制 深度学习 Spearman相关系数
在线阅读 下载PDF
基于DCNN网络及Self-Attention-BiGRU机制的轴承剩余寿命预测 被引量:4
18
作者 刘森 刘美 +2 位作者 贺银超 韩惠子 孟亚男 《机电工程》 CAS 北大核心 2024年第5期786-796,共11页
深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiG... 深度神经网络在剩余寿命预测(RUL)领域得到了广泛的应用。传统的滚动轴承寿命预测模型存在预测精确度较低、鲁棒性较弱的问题。为了进一步提升预测模型的精确度以及鲁棒性,提出了一种融合深度卷积神经网络(DCNN)、双向门控循环单元(BiGRU)以及自注意力机制(Self-Attention)三种模块的滚动轴承剩余使用寿命预测模型。首先,利用DCNN网络对原始振动信号的时域特征、频域特征进行了提取;然后,使用不确定量化的方法对提取到的特征进行了评价和筛选,利用筛选过后的特征构建了新的替代特征集;最后,利用Self-Attention-BiGRU网络对轴承的剩余使用寿命进行了预测,并在IEEE PHM2012数据集上进行了验证。实验结果表明:相较于BiGRU、GRU和BiLSTM三种模型的预测结果,基于DCNN及Self-Attention-BiGRU方法的预测结果最优,两项误差值:平均绝对误差(MAE)、均方根误差(RMSE)最低,其中工况一的一号轴承RUL预测的MAE值相较于BiGRU、GRU以及BiLSTM网络分别下降了7.0%、7.4%和6.5%,RMSE值相较于其他三种模型分别下降了7.6%、8.4%和6.9%,预测的Score值最高,分值为0.985。通过不同数据集的划分,证明了该方法在轴承RUL预测时的强鲁棒性。实验结果验证了基于DCNN网络及Self-Attention-BiGRU模型在轴承剩余使用寿命预测中的有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 双向门控循环单元 不确定量化 自注意力机制 深度卷积神经网络 预测与健康管理
在线阅读 下载PDF
基于DSConvBiGRU网络和热电堆阵列的动态手势识别方法 被引量:1
19
作者 顾亮 于莲芝 《计量学报》 CSCD 北大核心 2024年第6期795-805,共11页
提出了适用于嵌入式系统并融合深度可分离卷积神经网络与双向门控循环单元的DSConvBiGRU网络模型,将其用于动态手势序列的分类,设计并实现了一种使用低分辨率热电堆阵列传感器的动态手势识别解决方案,构建了动态手势数据集并在公开网站... 提出了适用于嵌入式系统并融合深度可分离卷积神经网络与双向门控循环单元的DSConvBiGRU网络模型,将其用于动态手势序列的分类,设计并实现了一种使用低分辨率热电堆阵列传感器的动态手势识别解决方案,构建了动态手势数据集并在公开网站发布,完成了预训练网络模型在Raspberry Pi边缘端的部署。系统对传感器输出的连续20个温度矩阵进行区间映射、背景减除、Lanczos插值和Otsu二值化预处理得到单个动态手势序列,再由预训练的DSConvBiGRU网络进行分类。实验结果表明:网络模型在测试集上识别准确率为99.291%,在边缘端预处理耗时5.513 ms,推理耗时8.231 ms,该系统满足低功耗、高精度和实时性的设计需求。 展开更多
关键词 机器视觉 光电检测 动态手势识别 热电堆阵列 深度可分离卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于双向门控循环单元的地表水氨氮预测 被引量:3
20
作者 任永琴 金柱成 +2 位作者 俞真元 王晓丽 彭士涛 《中国环境科学》 EI CAS CSCD 北大核心 2022年第2期672-679,共8页
为提高水环境中NH_(4)^(+)-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH_(4)^(+)-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神... 为提高水环境中NH_(4)^(+)-N的预测精度,提出了一种互补完全集合经验模式分解(CCEEMDAN)和双向门控循环单元(BiGRU)神经网络的混合预测模型(CCB).首先,通过CCEEMDAN将NH_(4)^(+)-N数据分解成一系列较为简单的模态成份;然后利用BiGRU神经网络对各成份进行预测,将所有分解成份的预测结果相加即可获得最终预测结果.以2017年6月~2020年2月鄱阳湖的NH_(4)^(+)-N数据进行模型性能验证.结果表明,利用CCB模型在1d后的NH_(4)^(+)-N预测中平均绝对百分比误差为3.38%,在7d后的NH_(4)^(+)-N预测中平均绝对百分比误差为6.82%,在15d后的NH_(4)^(+)-N预测中平均绝对百分比误差为9.41%,优于本文中参与比较的其他模型.CCB模型在NH_(4)^(+)-N预测方面具有良好的预测性能. 展开更多
关键词 鄱阳湖 氨氮(NH_(4)^(+)-N) 互补完全集合经验模式分解(CCEEMDAN) 双向门控循环单元(bigru)
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部