期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
儿童异常肺音识别的时序优化神经网络模型
1
作者 张龙基 魏云龙 +2 位作者 郑晓明 俞英健 熊丽君 《声学技术》 北大核心 2025年第5期730-737,共8页
异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网... 异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网络(convolutional neural network,CNN)与双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)的混合模型,用于儿童异常肺音的分类方法。该方法通过CNN对MFCC特征进行空间特性提取,利用BiLSTM对MFCC音频特征进行时序特性提取,建立了BCNnet(BILSTM CNN network)模型。文章收集并建立了一个儿童肺音数据集,在该数据集上,所提方法平均准确率可达75.3%,与以声谱图为输入的CNN(并行池化)模型相比,准确率提高了3.7个百分点,且在模型大小和识别速度上均有改善。 展开更多
关键词 异常肺音 MFCC特征 卷积神经网络 双向长短记忆网络 BCNnet模型
在线阅读 下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:33
2
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短记忆网络 注意力机制
在线阅读 下载PDF
基于双向长短时记忆网络和卷积神经网络的电力系统暂态稳定评估 被引量:17
3
作者 李向伟 刘思言 高昆仑 《科学技术与工程》 北大核心 2020年第7期2733-2739,共7页
基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优... 基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优布点上的时间序列特征,提出了一种将改进卷积神经网络(improved convolutional neural network,ICNN)与双向长短时记忆网络(bidirectional long short term memory network,BiLSTM)进行融合的评估方法。该方法首先利用BiLSTM提取电压、相角以及有功功率三种基本电气量的时间序列特征,随后通过卷积和池化操作对数据进行进一步的数据挖掘,最后利用轻量梯度提升机完成对数据的分类。为了避免出现过拟合现象,该方法还通过正则化、Dropout等方式提升模型的泛化性能。在新英格兰10机39节点上的算例表明,该方法能利用基本电气量数据进行暂态稳定评估,且在复杂条件下仍能保持较好的评估性能。 展开更多
关键词 暂态稳定评估 双向长短记忆网络 改进卷积神经网络 PMU数据采集
在线阅读 下载PDF
基于卷积神经网络-双向长短期记忆网络的人体活动识别方法 被引量:12
4
作者 孙彦玺 陈继斌 武东辉 《科学技术与工程》 北大核心 2022年第4期1517-1525,共9页
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,... 针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。 展开更多
关键词 人体活动识别(HAR) 卷积神经网络(CNN) 双向长短记忆网络(BiLSTM) 深度学习 可穿戴传感器
在线阅读 下载PDF
基于二次分解的混合神经网络蜂窝流量预测
5
作者 段阿敏 张朝辉 《系统工程与电子技术》 北大核心 2025年第5期1687-1697,共11页
在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(c... 在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法将原始流量分解为多个子序列,利用K-Shape聚类算法重构为频率序列和趋势序列。为了更细致地揭示数据的内在结构,运用变分模态分解(variational mode decomposition,VMD)方法对频率序列进行二次分解,生成多维频率序列。然后,将一维趋势序列和多维频率序列分别输入至局部特征提取模块,其中单通道特征提取层利用一维卷积神经网络(one-dimensional convolution neural network,1DCNN)提取一维趋势序列的局部特征,而多通道特征提取层则结合卷积块注意力模块(convolutional block attention module,CBAM)捕捉多维频率序列中的关键信息。紧接着将提取到的特征向量分别输入到时序信息学习模块中,利用双向长短时记忆(bidirectional long short term memory,BiLSTM)网络和注意力机制学习时序变化规律,完成预测流量的输出。最后,通过对趋势序列和频率序列的预测结果求和,实现对蜂窝流量的准确预测。为了验证所提方法的有效性,利用公开数据集进行实验验证,并与多种不同方法进行对比。实验结果表明,所提预测方法展现出更优的预测性能,为蜂窝网络的智能管理和优化提供了有力支持。 展开更多
关键词 蜂窝流量预测 模态分解 卷积神经网络 双向长短记忆网络 卷积块注意力模块
在线阅读 下载PDF
基于生成对抗网络和混合时空神经网络的入侵检测 被引量:3
6
作者 倪志伟 行鸿彦 +2 位作者 侯天浩 梁欣怡 王心怡 《电子测量技术》 北大核心 2024年第2期17-24,共8页
针对网络入侵检测领域存在检测准确率低的问题,研究异常流量样本少和分类器性能不佳时的入侵检测模型,提出一种基于改进生成对抗网络和混合时空神经网络的入侵检测模型。改进生成对抗网络通过学习异常流量样本的分布特性,生成具有特定... 针对网络入侵检测领域存在检测准确率低的问题,研究异常流量样本少和分类器性能不佳时的入侵检测模型,提出一种基于改进生成对抗网络和混合时空神经网络的入侵检测模型。改进生成对抗网络通过学习异常流量样本的分布特性,生成具有特定标签的人工异常流量样本;融合卷积神经网络和双向长短时记忆神经网络提取攻击流量的时空融合特征,利用注意力机制对时空融合特征进行加权,构建混合时空神经网络对网络流量进行分类预测。在UNSW-NB15数据集上对所提模型进行仿真实验,准确率和F1分数分别为92.93%和94.81%,表明所提模型能够有效改善原始数据集中的类别不平衡性问题,提高对异常流量样本的检测能力和网络入侵的检测准确率。 展开更多
关键词 网络入侵检测 生成对抗网络 卷积神经网络 双向长短记忆神经网络 注意力机制
在线阅读 下载PDF
基于深度神经网络的UHVDC输电系统故障诊断 被引量:4
7
作者 张峥 原帅 +2 位作者 时伟光 解涛 郝成龙 《电网与清洁能源》 CSCD 北大核心 2024年第7期88-94,共7页
针对传统特高压直流(UHVDC)故障诊断方法存在阈值整定复杂、灵敏度低以及耐受过渡电阻能力较弱的问题,提出了一种将多尺度卷积神经网络(multi-scale convolutional neural network,MCNN)、双向长短时记忆网络(bidirectional long short-... 针对传统特高压直流(UHVDC)故障诊断方法存在阈值整定复杂、灵敏度低以及耐受过渡电阻能力较弱的问题,提出了一种将多尺度卷积神经网络(multi-scale convolutional neural network,MCNN)、双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)和注意力(Attention)机制相结合的UHVDC输电系统故障诊断方法。通过MCNN挖掘标准化后的故障数据不同尺度的空间特征;利用双层BiLSTM获取数据中的时序依赖特征;引入Attention机制为数据的不同特征向量合理分配注意力。结果表明:所提方法在4种评价指标上都优于其他对比算法,能够准确识别UHVDC输电系统的各种区内、外故障和测量故障,并且在面对高阻故障时仍然具有较高的分类精度。 展开更多
关键词 特高压直流 故障诊断 卷积神经网络 双向长短记忆网络 注意力机制
在线阅读 下载PDF
基于多通道卷积双向长短时记忆网络的输电线故障分类 被引量:7
8
作者 沈银 席燕辉 陈子璇 《电力系统保护与控制》 CSCD 北大核心 2022年第3期114-120,共7页
针对单通道故障分类器不能全面表达三相故障特征信息引起分类精度不高的问题,提出了一种基于多通道卷积双向长短时记忆神经网络(MCCNN-BiLSTM)的输电线故障分类方法。该方法可同时输入故障三相信号,并能有效提取故障信号的空间和时间特... 针对单通道故障分类器不能全面表达三相故障特征信息引起分类精度不高的问题,提出了一种基于多通道卷积双向长短时记忆神经网络(MCCNN-BiLSTM)的输电线故障分类方法。该方法可同时输入故障三相信号,并能有效提取故障信号的空间和时间特征,实现了三相故障信号特征的全面提取,有效地提高了神经网络的分类的精度。基于735 kV三相串联补偿输电线模型大量故障数据分析,对三相故障电压信号不采用任何特征提取算法,仅截取故障周期的三相电压幅值数据作为基本故障特征信号输入。仿真实验结果表明:该网络能快速准确地分类识别11种故障,并且不易受故障时刻、过度电阻等因素的影响,具有良好的鲁棒性和适应性。 展开更多
关键词 输电线 多通道卷积神经网络 双向长短记忆神经网络 故障分类
在线阅读 下载PDF
模型误差影响下基于CNN+BiLSTM神经网络的非圆信号目标直接跟踪算法 被引量:1
9
作者 尹洁昕 王鼎 +1 位作者 杨欣 杨宾 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1315-1329,共15页
针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算... 针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算法首先利用多运动观测阵列信号各频带间的相关性与辐射源信号的非圆特性,建立模型误差影响下的扩展多站观测矢量;接着利用多个观测时隙内扩展多站观测矢量的信号子空间构造空时特征输入序列;然后设计基于CNN与BiLSTM混合神经网络的直接跟踪模型,通过训练实现对非圆目标的轨迹矢量直接估计.本文算法是从原始数据信号子空间中估计轨迹矢量的直接跟踪模式,相比传统“观测参数估计+滤波轨迹跟踪”的两步估计模式,具有更高的估计精度.由于本文算法在神经网络训练过程中学习到模型误差的信息,因此能够实现对多种误差的校正.仿真结果表明,本文算法较传统两步跟踪算法与现有直接跟踪算法均具有更高的轨迹估计精度,能够明显提升模型误差影响下多站协同跟踪的鲁棒性. 展开更多
关键词 直接跟踪 非圆信号 模型误差 卷积神经网络 双向长短记忆网络
在线阅读 下载PDF
基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度智能预测 被引量:7
10
作者 郭力 郑良瑞 冯浪 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第3期401-409,共9页
部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向... 部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。 展开更多
关键词 部分稳定氧化锆 磨削声发射 相关性分析 卷积-双向长短记忆神经网络 表面粗糙度预测
在线阅读 下载PDF
基于迁移学习和Bi-LSTM神经网络的桥梁温度-应变映射建模方法 被引量:8
11
作者 方佳畅 黄天立 +1 位作者 李苗 王亚飞 《振动与冲击》 EI CSCD 北大核心 2023年第12期126-134,186,共10页
为快速构建并准确预测温度作用引起的斜拉桥主梁应变用于结构状态评估,基于某大跨度斜拉桥主梁超过1年的温度和应变监测数据,提出了一种基于迁移学习和双向长短时记忆(bi-directional long short-term memory,Bi-LSTM)神经网络的斜拉桥... 为快速构建并准确预测温度作用引起的斜拉桥主梁应变用于结构状态评估,基于某大跨度斜拉桥主梁超过1年的温度和应变监测数据,提出了一种基于迁移学习和双向长短时记忆(bi-directional long short-term memory,Bi-LSTM)神经网络的斜拉桥温度-应变映射模型建立方法。首先,利用解析模态分解(analytical mode decomposition,AMD)去噪应变数据,得到仅由温度引起的应变响应;其次,选择温度和某一测点应变数据构成数据集,采用Bi-LSTM神经网络训练该数据集,并通过网络结构和超参数优化建立温度-应变Bi-LSTM基准模型;最后,利用迁移学习方法,将已训练好的基准模型中部分参数迁移到其他温度-应变数据集,建立相应的温度-应变映射被迁移模型,并与未采用迁移学习的神经网络训练方法进行对比。研究结果表明,相比直接建立的温度-应变Bi-LSTM神经网络映射模型,采用迁移学习方法建立的被迁移模型,其拟合精度均高于所用的基准模型,且训练时间短,预测误差小。 展开更多
关键词 结构健康监测 大跨度斜拉桥 温度-应变映射模型 迁移学习 双向长短记忆(Bi-LSTM)神经网络
在线阅读 下载PDF
基于注意力模型的卷积循环神经网络城市声音识别 被引量:4
12
作者 杨磊 赵红东 《科学技术与工程》 北大核心 2020年第33期13757-13761,共5页
环境声音识别(environment sound recognition,ESR)在基于情景感知和辅助技术等领域发挥着重要作用。卷积神经网络(CNN)和循环神经网络(RNN)作为两种最具代表性的特征提取方法,在语音和音乐信号处理方面都取得显著效果;然而二者都存在... 环境声音识别(environment sound recognition,ESR)在基于情景感知和辅助技术等领域发挥着重要作用。卷积神经网络(CNN)和循环神经网络(RNN)作为两种最具代表性的特征提取方法,在语音和音乐信号处理方面都取得显著效果;然而二者都存在一定缺点,CNN无法有效提取时间特征,RNN在提取空间特征上也存在明显劣势。为了有效提取并利用时间特征和空间特征,提出一种新模型,利用时间分布CNN从梅尔频谱图中提取城市环境声音特征,然后应用双向长短时记忆网络(BiLSTM)从CNN输出中获取时间信息,最后在输出序列上实施注意力机制,从而关注到与城市环境声音最相关的特征进而做出分类判断,注意力机制既提高了分类准确性,又增强了模型的可解释性。实验结果表明:在Urbansound8K数据集中,该模型可获得80.2%的分类准确率,这优于以往在同一数据集的报告结果。 展开更多
关键词 卷积神经网络 双向长短记忆网络 注意力机制
在线阅读 下载PDF
基于混合分布注意力机制与混合神经网络的语音情绪识别方法 被引量:5
13
作者 陈巧红 于泽源 贾宇波 《计算机工程与科学》 CSCD 北大核心 2022年第12期2246-2254,共9页
针对现有语音情绪识别中存在无关特征多和准确率较差的问题,提出一种基于混合分布注意力机制与混合神经网络的语音情绪识别方法。该方法在2个通道内,分别使用卷积神经网络和双向长短时记忆网络进行语音的空间特征和时序特征提取,然后将... 针对现有语音情绪识别中存在无关特征多和准确率较差的问题,提出一种基于混合分布注意力机制与混合神经网络的语音情绪识别方法。该方法在2个通道内,分别使用卷积神经网络和双向长短时记忆网络进行语音的空间特征和时序特征提取,然后将2个网络的输出同时作为多头注意力机制的输入矩阵。同时,考虑到现有多头注意力机制存在的低秩分布问题,在注意力机制计算方式上进行改进,将低秩分布与2个神经网络的输出特征的相似性做混合分布叠加,再经过归一化操作后将所有子空间结果进行拼接,最后经过全连接层进行分类输出。实验结果表明,基于混合分布注意力机制与混合神经网络的语音情绪识别方法比现有其他方法的准确率更高,验证了所提方法的有效性。 展开更多
关键词 语音情绪识别 梅尔频率倒谱系数 双向长短记忆网络 卷积神经网络 多头注意力机制
在线阅读 下载PDF
基于分层注意力机制的神经网络垃圾评论检测模型 被引量:3
14
作者 刘雨心 王莉 张昊 《计算机应用》 CSCD 北大核心 2018年第11期3063-3068,3074,共7页
针对现有垃圾评论识别方法很难揭示用户评论的潜在语义信息这一问题,提出一种基于层次注意力的神经网络检测(HANN)模型。该模型主要由以下两部分组成:Word2Sent层,在词向量表示的基础上,采用卷积神经网络(CNN)生成连续的句子表示;Sent2... 针对现有垃圾评论识别方法很难揭示用户评论的潜在语义信息这一问题,提出一种基于层次注意力的神经网络检测(HANN)模型。该模型主要由以下两部分组成:Word2Sent层,在词向量表示的基础上,采用卷积神经网络(CNN)生成连续的句子表示;Sent2Doc层,基于上一层产生的句子表示,使用注意力池化的神经网络生成文档表示。生成的文档表示直接作为垃圾评论的最终特征,采用softmax分类器分类。此模型通过完整地保留评论的位置和强度特征,并从中提取重要的和综合的信息(文档任何位置的历史、未来和局部上下文),挖掘用户评论的潜在语义信息,从而提高垃圾评论检测准确率。实验结果表明,与仅基于神经网络的方法相比,该模型准确率平均提高5%,分类效果显著改善。 展开更多
关键词 垃圾评论 表示学习 注意力机制 卷积神经网络 双向长短记忆
在线阅读 下载PDF
基于双向LSTM卷积网络与注意力机制的自动睡眠分期模型 被引量:9
15
作者 李倩玉 王蓓 +2 位作者 金晶 张涛 王行愚 《智能系统学报》 CSCD 北大核心 2022年第3期523-530,共8页
针对现阶段深度睡眠分期模型存在的梯度消失、对时序信息学习能力较弱等问题,提出一种基于双向长短时记忆卷积网络与注意力机制的自动睡眠分期模型。将少样本类别的睡眠脑电数据通过过采样方式进行数据增强后,利用带残差块的卷积神经网... 针对现阶段深度睡眠分期模型存在的梯度消失、对时序信息学习能力较弱等问题,提出一种基于双向长短时记忆卷积网络与注意力机制的自动睡眠分期模型。将少样本类别的睡眠脑电数据通过过采样方式进行数据增强后,利用带残差块的卷积神经网络学习数据特征表示,再通过带注意力层的双向长短时记忆网络挖掘深层时序信息,使用Softmax层实现睡眠分期的自动判别。实验使用Sleep-EDF数据集中19晚单通道脑电信号对模型进行交叉验证,取得了较高的分类准确率和宏平均F_(1)值,优于对比方法。该方法能够有效缓解睡眠分期判别中少数类分类性能较低的问题,并提高了深度睡眠分期模型的整体分类性能。 展开更多
关键词 睡眠分期 脑电图 卷积神经网络 残差网络 双向长短记忆网络 注意力机制 类不平衡 过采样
在线阅读 下载PDF
基于DAE-BiLSTM-CNN的滚动轴承故障诊断方法 被引量:7
16
作者 王英杰 朱景建 +1 位作者 龚智强 何彦虎 《机械设计》 CSCD 北大核心 2024年第11期123-129,共7页
滚动轴承作为机械设备中的核心组件,其运行状态直接影响系统的安全性与可靠性。由于轴承运转过程中的噪声干扰,传统故障诊断方法存在识别不准确、模型泛化有限等不足。为解决此问题,提出了一种基于DAE-BiLSTM-CNN的滚动轴承故障诊断方... 滚动轴承作为机械设备中的核心组件,其运行状态直接影响系统的安全性与可靠性。由于轴承运转过程中的噪声干扰,传统故障诊断方法存在识别不准确、模型泛化有限等不足。为解决此问题,提出了一种基于DAE-BiLSTM-CNN的滚动轴承故障诊断方法。通过去噪自动编码器(DAE)提高模型去除噪声干扰能力、采用双向长短时记忆网络(BiLSTM)提取轴承运转过程中的时序特征,再采用卷积神经网络(CNN)提取显著特征进行故障判别与分类。采用已公开数据对模型进行训练及超参数优化,并比较了提出的故障诊断模型与现有模型的准确性、精度、召回率及F1分数等性能评价指标。结果表明:相比于现有的故障诊断模型,所提方法具有更高的精度及召回率,验证了该故障诊断模型的准确性及可靠性,同时也说明该诊断方法对于实际工业应用中的滚动轴承故障诊断具备一定的理论参考价值。 展开更多
关键词 滚动轴承 故障诊断 去噪自动编码器 双向长短记忆网络 卷积神经网络
在线阅读 下载PDF
GNSS拒止时基于并行CNN-BiLSTM回归和残差补偿的UAV导航误差校正方法 被引量:1
17
作者 韩宾 邵一涵 +3 位作者 罗颖 田杰 曾闵 江虹 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期57-69,共13页
全球导航卫星系统(GNSS)拒止时,GNSS/惯性导航系统(INS)组合导航系统的性能严重下降,导致无人机集群导航误差快速发散.目前,利用神经网络预测位置与速度代替GNSS导航信息可校正无人机INS误差,但该方法仍存在定位误差较高且在轨迹突变时... 全球导航卫星系统(GNSS)拒止时,GNSS/惯性导航系统(INS)组合导航系统的性能严重下降,导致无人机集群导航误差快速发散.目前,利用神经网络预测位置与速度代替GNSS导航信息可校正无人机INS误差,但该方法仍存在定位误差较高且在轨迹突变时预测精度急剧下降的问题.因此,提出了一种基于卷积-双向长短时记忆网络联合残差补偿的位置与速度预测方法,用于提高位置与速度预测精度.首先,针对GNSS拒止后GNSS/INS组合导航系统定位误差较高的问题,提出卷积神经网络(CNN)与双向长短时记忆网络(BiLSTM)的融合模型,该模型可建立惯性测量单元(IMU)动力学测量数据与GNSS导航信息之间的关系,实现较准确的位置和速度预测.其次,针对轨迹突变时预测效果急剧下降的问题,提出并行CNNBiLSTM回归架构,在预测位置与速度的同时,挖掘IMU动力学测量数据、预测值与预测残差之间的关系,预测并补偿预测残差,增强模型在轨迹突变时的预测精度.仿真结果表明,所提模型在预测准确性、有效性和稳定性方面都优于CNN-LSTM、LSTM网络模型. 展开更多
关键词 全球导航卫星系统拒止 卷积神经网络 双向长短记忆网络 残差补偿 自适应卡尔曼滤波
在线阅读 下载PDF
基于TCNN-BiLSTM网络的调制识别算法 被引量:7
18
作者 刘凯 张斌 黄青华 《系统工程与电子技术》 EI CSCD 北大核心 2020年第8期1841-1849,共9页
针对传统调制识别算法在低信噪比下识别率不高的情况,提出双路卷积神经网络级联双向长短时记忆(two-way convolutional neural network cascaded bidirectional long short-term memory,TCNN-BiLSTM)网络的调制识别算法。首先,该算法并... 针对传统调制识别算法在低信噪比下识别率不高的情况,提出双路卷积神经网络级联双向长短时记忆(two-way convolutional neural network cascaded bidirectional long short-term memory,TCNN-BiLSTM)网络的调制识别算法。首先,该算法并联不同尺度卷积核的卷积层,提取调制信号不同维度的特征。然后,级联BiLSTM层,对多维特征构建LSTM时间模型。最后,使用softmax分类器完成识别。仿真实验表明,所提算法结构在加性高斯白噪声和特定信道参数的瑞利衰落信道下,性能要优于基于传统特征和其他网络结构的识别算法。在特定信道参数的瑞利衰落信道下信噪比低至6dB时,该算法对6种数字调制信号的识别率仍可达到92%以上。 展开更多
关键词 调制识别 并联网络 卷积神经网络 双向长短记忆网络
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
19
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短记忆 一维卷积神经网络
在线阅读 下载PDF
基于IPOA-MSCNN-BiLSTM-Attention模型的刀具磨损状态识别
20
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《组合机床与自动化加工技术》 北大核心 2025年第7期158-163,共6页
刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention... 刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention)以增强对关键信息的关注度;再次,提出了一种改进的鹈鹕优化算法(IPOA),用于优化模型多尺度卷积神经网络的参数。该算法结合自适应惯性权重因子、柯西变异和麻雀警戒机制策略,在CEC2005至CEC2022的众多函数性能测试中综合表现优于传统POA等5种算法;最后,在工业控制计算机(IPC)上运行了模型。结果表明,该模型在刀具磨损状态识别方面表现出较高的识别精度,可提高加工安全与生产效率。 展开更多
关键词 刀具磨损 状态监测 改进的鹈鹕优化算法 多尺度卷积神经网络 双向长短记忆网络
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部