“双碳”背景下风电的渗透率不断提高,将对电力系统的形态和运行机制产生深刻影响。本文提出了一种基于双向长短期记忆Bi-LSTM(bidirectional long short-term memory)循环神经网络的风储系统控制策略。采用双向长短时循环神经网络提取...“双碳”背景下风电的渗透率不断提高,将对电力系统的形态和运行机制产生深刻影响。本文提出了一种基于双向长短期记忆Bi-LSTM(bidirectional long short-term memory)循环神经网络的风储系统控制策略。采用双向长短时循环神经网络提取控制结果与风电场实际出力以及储能状态间的时序信息,通过构建基于双向长短时记忆循环神经网络的控制模型,使得风电场在多种运行工况下能够快速、准确地得到储能系统调节结果。基于实际风电场数据仿真结果表明,本文所提控制策略能够保证在一定经济效益的前提下,将风储系统控制误差保持在0.50%~1.37%。展开更多
任务中全局注意力在长距离视频序列上注意力值分布的方差较大,生成关键帧的重要性分数偏差较大,且时间序列节点边界值缺乏长程依赖导致的片段语义连贯性较差等问题,通过改进注意力模块,采用分段局部自注意力和全局自注意力机制相结合来...任务中全局注意力在长距离视频序列上注意力值分布的方差较大,生成关键帧的重要性分数偏差较大,且时间序列节点边界值缺乏长程依赖导致的片段语义连贯性较差等问题,通过改进注意力模块,采用分段局部自注意力和全局自注意力机制相结合来获取局部和全局视频序列关键特征,降低注意力值的方差。同时通过并行地引入双向门控循环网络(bidirectional recurrent neural network,BiGRU),二者的输出分别输入到改进的分类回归模块后再将结果进行加性融合,最后利用非极大值抑制(non-maximum suppression,NMS)和核时序分割方法(kernel temporal segmentation,KTS)筛选片段并分割为高质量代表性镜头,通过背包组合优化算法生成最终摘要,从而提出一种结合多尺度注意力机制和双向门控循环网络的视频摘要模型(local and global attentions combine with the BiGRU,LG-RU)。该模型在TvSum和SumMe的标准和增强数据集上进行了对比试验,结果表明该模型取得了更高的F-score,证实了该视频摘要模型保持高准确率的同时可鲁棒地对视频完成摘要。展开更多
针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最...针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最大信息系数分析得出13个特征值为输入变量,pH为输出变量,并建立浆液pH模型;最后,运行模型,并对结果进行评价。研究结果显示,与长短期记忆和门控循环相比,所选用的数学模型的平均绝对误差分别下降了11.95%、24.92%,均方根误差分别下降了10.64%、19.49%,决定系数分别提高了1.79%、3.08%。表明基于双向门控循环单元的pH预测模型具有较高的精确度和稳定性,具有工程应用价值,为现有脱硫塔pH预测模型提供了工程参考。展开更多
针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long ...针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long short-term memory with encoder-decoder,ED-BLSTM)的起重机械设备健康预测方法。对监测数据进行时序排列,在保证相同输入-输出时间步长尺寸情况下对数据集切分重组,将处理后数据集输入到卷积神经网络,提取主要特征,得到多维矩阵。采用基于编码解码器的双向长短期循环神经网络对多维矩阵进行训练,建立起重机械多时间单位步长的目标预测模型,达到长期预测起重机械设备健康状态的目的。对比实验表明,所提方法的验证损失最多降低0.474%,最少降低0.097%;预测损失最多降低1.411%,最少降低1.230%,实际预测性能有较大提高,对工业起重机械健康预测技术的发展有积极意义。展开更多
文摘“双碳”背景下风电的渗透率不断提高,将对电力系统的形态和运行机制产生深刻影响。本文提出了一种基于双向长短期记忆Bi-LSTM(bidirectional long short-term memory)循环神经网络的风储系统控制策略。采用双向长短时循环神经网络提取控制结果与风电场实际出力以及储能状态间的时序信息,通过构建基于双向长短时记忆循环神经网络的控制模型,使得风电场在多种运行工况下能够快速、准确地得到储能系统调节结果。基于实际风电场数据仿真结果表明,本文所提控制策略能够保证在一定经济效益的前提下,将风储系统控制误差保持在0.50%~1.37%。
文摘任务中全局注意力在长距离视频序列上注意力值分布的方差较大,生成关键帧的重要性分数偏差较大,且时间序列节点边界值缺乏长程依赖导致的片段语义连贯性较差等问题,通过改进注意力模块,采用分段局部自注意力和全局自注意力机制相结合来获取局部和全局视频序列关键特征,降低注意力值的方差。同时通过并行地引入双向门控循环网络(bidirectional recurrent neural network,BiGRU),二者的输出分别输入到改进的分类回归模块后再将结果进行加性融合,最后利用非极大值抑制(non-maximum suppression,NMS)和核时序分割方法(kernel temporal segmentation,KTS)筛选片段并分割为高质量代表性镜头,通过背包组合优化算法生成最终摘要,从而提出一种结合多尺度注意力机制和双向门控循环网络的视频摘要模型(local and global attentions combine with the BiGRU,LG-RU)。该模型在TvSum和SumMe的标准和增强数据集上进行了对比试验,结果表明该模型取得了更高的F-score,证实了该视频摘要模型保持高准确率的同时可鲁棒地对视频完成摘要。
文摘针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最大信息系数分析得出13个特征值为输入变量,pH为输出变量,并建立浆液pH模型;最后,运行模型,并对结果进行评价。研究结果显示,与长短期记忆和门控循环相比,所选用的数学模型的平均绝对误差分别下降了11.95%、24.92%,均方根误差分别下降了10.64%、19.49%,决定系数分别提高了1.79%、3.08%。表明基于双向门控循环单元的pH预测模型具有较高的精确度和稳定性,具有工程应用价值,为现有脱硫塔pH预测模型提供了工程参考。
文摘针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出一种结合卷积神经网络(convolutional neural network,CNN)和双向编码解码长短期循环神经网络(bidirectional long short-term memory with encoder-decoder,ED-BLSTM)的起重机械设备健康预测方法。对监测数据进行时序排列,在保证相同输入-输出时间步长尺寸情况下对数据集切分重组,将处理后数据集输入到卷积神经网络,提取主要特征,得到多维矩阵。采用基于编码解码器的双向长短期循环神经网络对多维矩阵进行训练,建立起重机械多时间单位步长的目标预测模型,达到长期预测起重机械设备健康状态的目的。对比实验表明,所提方法的验证损失最多降低0.474%,最少降低0.097%;预测损失最多降低1.411%,最少降低1.230%,实际预测性能有较大提高,对工业起重机械健康预测技术的发展有积极意义。