目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP...目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。展开更多
为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM...为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)的组合模型预测瓦斯涌出量。首先,运用主成分分析法(Principal Components Analysis,PCA)处理瓦斯涌出影响因素,降低数据维度,以减少模型计算时的负担;其次,利用GWO优化BiLSTM模型的学习率(best_lr)、隐藏层层数(best_hd)以及正则化系数(best_l2),可有效避免局部最优解问题,并采用决定系数(R-Square,R^(2))、均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)对所建模型预测的结果进行综合评价分析;最后,将该模型应用于内蒙古自治区某矿回采工作面预测瓦斯涌出量。结果显示:PCA GWO BiLSTM组合模型相比于长短期记忆神经网络(Long Short-Term Memory,LSTM)和双向长短期记忆神经网络对应的单一模型,其MAE分别降低20.81%、30.17%,RMSE分别降低0.063、0.142,R^(2)则分别提高了0.023、0.075,表明该模型在复杂因素条件下具有更高的精准度、泛化性和鲁棒性。展开更多
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,...针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。展开更多
文摘目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。
文摘针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。