期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于卷积门控循环神经网络的刀具磨损状态监测 被引量:10
1
作者 吴凤和 钟浩 +2 位作者 章钦 郭保苏 孙迎兵 《计量学报》 CSCD 北大核心 2021年第8期1034-1040,共7页
针对刀具磨损状态在线监测需求,提出一种基于卷积门控循环神经网络的刀具磨损状态在线监测方法。综合卷积神经网络和门控循环神经网络的优点,构建了卷积门控循环神经网络;以切削力为输入信号,通过小波变换滤除噪声;利用卷积神经网络提... 针对刀具磨损状态在线监测需求,提出一种基于卷积门控循环神经网络的刀具磨损状态在线监测方法。综合卷积神经网络和门控循环神经网络的优点,构建了卷积门控循环神经网络;以切削力为输入信号,通过小波变换滤除噪声;利用卷积神经网络提取表征刀具磨损状态关键信息的高维特征;通过门控循环神经单元使模型在时间尺度上的累积效应得到充分表达,体现磨损的时序特性。实验表明,在有限的刀具磨损数据样本条件下,通过卷积门控循环神经网络进行刀具磨损状态监测具有较好的效果,其准确率达到97%。 展开更多
关键词 计量学 刀具磨损 切削力 卷积门控神经网络 在线监测
在线阅读 下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:17
2
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
在线阅读 下载PDF
基于多分支门控残差卷积神经网络的短期电力负荷预测 被引量:15
3
作者 樊江川 于昊正 +2 位作者 刘慧婷 杨丽君 安佳坤 《中国电力》 CSCD 北大核心 2022年第11期155-162,174,共9页
短期电力负荷预测是电力部门进行电网规划和运行调度的重要工作之一,针对负荷数据的时序性特征,为提升电力负荷预测精度,建立了一种基于多分支门控残差卷积神经网络(residualgatedconvolutional neural network,RGCNN)的短期电力负荷预... 短期电力负荷预测是电力部门进行电网规划和运行调度的重要工作之一,针对负荷数据的时序性特征,为提升电力负荷预测精度,建立了一种基于多分支门控残差卷积神经网络(residualgatedconvolutional neural network,RGCNN)的短期电力负荷预测模型。该模型首先采用多分支门控残差卷积神经网络对历史负荷的周周期特征、日周期特征、近邻特征进行深度特征提取;其次为增加模型的非线性拟合能力,采用注意力机制对权重进一步合理分配;最后通过归一化指数函数计算后输出负荷预测结果。使用2016年某电力竞赛数据进行实验,通过与4种常用模型对比,该模型预测结果的平均绝对百分误差(MAPE)评价指标下降了0.02%~0.70%,验证了该模型提高负荷预测精度的有效性。 展开更多
关键词 短期负荷预测 多分支神经网络 门控残差卷积神经网络 注意力机制 特征提取
在线阅读 下载PDF
基于门控双卷积神经网络的机动车发动机故障检测 被引量:2
4
作者 鲍文霞 刘杨 +1 位作者 杨先军 梁栋 《安徽大学学报(自然科学版)》 CAS 北大核心 2022年第2期39-45,共7页
采集并构建一个包含正常和故障机动车发动机的声信号数据集,提出基于门控双卷积神经网络的机动车发动机故障检测方法.在门控卷积神经网络基础上设计门控双卷积神经网络.对比不同方法的实验结果可知:支持向量机(support vector machine,... 采集并构建一个包含正常和故障机动车发动机的声信号数据集,提出基于门控双卷积神经网络的机动车发动机故障检测方法.在门控卷积神经网络基础上设计门控双卷积神经网络.对比不同方法的实验结果可知:支持向量机(support vector machine,简称SVM)方法的检测准确率最低,该文方法的检测准确率最高;对声信号进行加噪和调音时,该文方法表现出好的鲁棒性. 展开更多
关键词 机动车发动机 故障检测 门控卷积神经网络
在线阅读 下载PDF
基于轻量级卷积门控循环神经网络的语声增强方法 被引量:3
5
作者 王玫 李江和 +1 位作者 宋浠瑜 刘小娟 《应用声学》 CSCD 北大核心 2023年第3期652-658,共7页
针对在基于深度学习语声增强方法中因采用因果式的网络输入导致语声增强性能下降的问题,提出了一种基于轻量级卷积门控循环神经网络的语声增强方法。门控循环神经网络能够建模语声信号的时间相关性,但是其全连接结构忽略了语声信号的时... 针对在基于深度学习语声增强方法中因采用因果式的网络输入导致语声增强性能下降的问题,提出了一种基于轻量级卷积门控循环神经网络的语声增强方法。门控循环神经网络能够建模语声信号的时间相关性,但是其全连接结构忽略了语声信号的时频结构特征,并且参数数量庞大,不利于网络的训练。对此,该文采用卷积核替代门控循环神经网络中的全连接结构,在对语声信号时间相关性建模的同时保留了语声信号的时频结构特征,同时降低了网络的参数数量。为充分利用先前帧的特征信息,该网络单元当前时刻的输入融合了上一时刻的输入与输出。针对网络训练过程中容易产生过拟合的问题,该文采用了线性门控机制来控制信息的传输,这缓解了网络训练过程中的过拟合问题,提高了网络的语声增强性能。实验结果表明,该文所提出的网络结构在增强后的语声感知质量、语声短时客观可懂度、分段信噪比等指标上均优于传统的网络结构。 展开更多
关键词 卷积门控循环神经网络 固定时延 因果式语声增强 语声质量 语声可懂度
在线阅读 下载PDF
基于改进卷积-门控网络及Informer的两种中长期风电功率预测方法
6
作者 任鑫 王一妹 +3 位作者 王华 周利 葛畅 韩爽 《现代电力》 北大核心 2025年第3期542-549,共8页
为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络... 为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络-门控循环单元(convolutional neural network-gate recurrent unit,CNN-GRU)的时间尺度降维模型,通过CNN模块及GRU模块分别实现了长时间序列的融合和还原,以及降维后时间序列的预测;另一方面,基于Informer网络的多头注意力机制实现了序列长期依赖特征的挖掘。算例结果表明,两种方法在不同的场景下有着不同的适应性,在第10日的准确率和合格率分别达到74.21%/73.47%、71.81%/74.48%,与常规GRU、CNN、时间卷积网络模型相比,预测精度提升明显,预测效果良好。 展开更多
关键词 中长期功率预测 长序列预测 卷积神经网络-门控循环单元 INFORMER 多头注意力
在线阅读 下载PDF
不平衡数据下基于改进门控卷积网络的轴承故障诊断
7
作者 郗昌盛 梁小夏 +3 位作者 田少宁 杨杰 冯国金 甄冬 《噪声与振动控制》 CSCD 北大核心 2024年第4期153-160,共8页
深度学习在滚动轴承故障诊断中具有广泛的应用,然而,现实中的监测数据往往具有不平衡性,这就会对模型的诊断性能产生很大影响。因此,提出一种基于改进门控卷积神经网络(Improved Gated Convolutional Neural Network,IGCNN)的故障诊断方... 深度学习在滚动轴承故障诊断中具有广泛的应用,然而,现实中的监测数据往往具有不平衡性,这就会对模型的诊断性能产生很大影响。因此,提出一种基于改进门控卷积神经网络(Improved Gated Convolutional Neural Network,IGCNN)的故障诊断方法,用于数据不平衡条件下的故障诊断。首先,提出改进门控卷积层以增强特征提取能力,通过批量归一化技术提高模型的泛化能力。然后,使用标签分布感知边界(Label-distribution-aware Margin,LDAM)损失函数提高模型对少数类的敏感度,减小数据不平衡对模型的影响。将所提算法应用在两组故障轴承数据上,在数据不平衡率为20:1的情况下,所提算法仍然可达到92.71%和94.47%的故障识别率,而对比的其他主流深度学习模型在该情况下只有60%~72%的准确率,表明所提方法在数据集严重不平衡情况下具有很强的诊断能力和鲁棒性。 展开更多
关键词 故障诊断 数据不平衡 改进门控卷积神经网络 标签分布感知边界损失函数 滚动轴承
在线阅读 下载PDF
基于混合神经网络的实体和事件联合抽取方法 被引量:20
8
作者 吴文涛 李培峰 朱巧明 《中文信息学报》 CSCD 北大核心 2019年第8期77-83,共7页
实体和事件抽取旨在从文本中识别出实体和事件信息并以结构化形式予以呈现。现有工作通常将实体抽取和事件抽取作为两个单独任务,忽略了这两个任务之间的紧密关系。实际上,事件和实体密切相关,实体往往在事件中充当参与者。该文提出了... 实体和事件抽取旨在从文本中识别出实体和事件信息并以结构化形式予以呈现。现有工作通常将实体抽取和事件抽取作为两个单独任务,忽略了这两个任务之间的紧密关系。实际上,事件和实体密切相关,实体往往在事件中充当参与者。该文提出了一种混合神经网络模型,同时对实体和事件进行抽取,挖掘两者之间的依赖关系。模型采用双向LSTM识别实体,并将在双向LSTM中获得的实体上下文信息进一步传递到结合了自注意力和门控卷积的神经网络来抽取事件。在英文ACE 2005语料库上的实验结果证明了该文方法优于目前最好的基准系统。 展开更多
关键词 事件抽取 实体抽取 自注意力 门控卷积神经网络
在线阅读 下载PDF
基于残差网络和门控卷积网络的语音识别研究 被引量:10
9
作者 朱学超 张飞 +2 位作者 高鹭 任晓颖 郝斌 《计算机工程与应用》 CSCD 北大核心 2022年第7期185-191,共7页
由于传统循环神经网络具有复杂的结构,需要大量的数据才能在连续语音识别中进行正确训练,并且训练需要耗费大量的时间,对硬件性能要求很大。针对以上问题,提出了基于残差网络和门控卷积神经网络的算法,并结合联结时序分类算法,构建端到... 由于传统循环神经网络具有复杂的结构,需要大量的数据才能在连续语音识别中进行正确训练,并且训练需要耗费大量的时间,对硬件性能要求很大。针对以上问题,提出了基于残差网络和门控卷积神经网络的算法,并结合联结时序分类算法,构建端到端中文语音识别模型。该模型将语谱图作为输入,通过残差网络提取高层抽象特征,然后通过堆叠门控卷积神经网络捕获有效的长时间记忆,摆脱了传统循环神经网络对上下文相关性建模的依赖,加快了模型的训练速度。对残差网络进行了优化,并在门控卷积神经网络中加入了前馈神经网络,极大提高了模型的性能。实验结果表明,在Aishell-1中文数据集上,该模型的字错误率降低至11.43%;并且在-5 dB低信噪比环境下,字错误率达到了19.77%。 展开更多
关键词 残差网络 门控卷积神经网络 联结时序分类 Swish激活函数
在线阅读 下载PDF
基于多头注意力门控卷积网络的特定目标情感分析 被引量:1
10
作者 李浩 樊建聪 《山东科技大学学报(自然科学版)》 CAS 北大核心 2022年第2期99-107,共9页
在特定目标情感分析中,现有的循环神经网络模型存在训练时间长且获取目标相关信息困难的问题。针对该问题,利用注意力机制,提出一种带有位置嵌入的多头注意力门控卷积网络(PE-MAGCN)。首先,模型使用多头注意力层获取目标词与上下文词之... 在特定目标情感分析中,现有的循环神经网络模型存在训练时间长且获取目标相关信息困难的问题。针对该问题,利用注意力机制,提出一种带有位置嵌入的多头注意力门控卷积网络(PE-MAGCN)。首先,模型使用多头注意力层获取目标词与上下文词之间的信息,并额外加入文本和目标词的相对位置嵌入信息,然后采用带有门控机制的卷积神经网络提取与目标词有关的情感特征,最后通过Softmax分类器来识别情感极性倾向。使用SemEval 2014数据集与目前主要用于目标情感识别的模型进行实验对比,结果表明本模型的准确率和F1值较高,可以较好地完成特定目标情感分析任务。 展开更多
关键词 目标情感分析 门控卷积神经网络 多头注意力机制 位置嵌入
在线阅读 下载PDF
基于时序生成对抗网络的居民用户非侵入式负荷分解 被引量:3
11
作者 罗平 朱振宇 +3 位作者 樊星驰 孙博宇 张帆 吕强 《电力系统自动化》 EI CSCD 北大核心 2024年第2期71-81,共11页
现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。... 现有的非侵入式负荷分解算法往往需要大量电器设备级的负荷数据才能保证分解精度,但由于用户对隐私性的考虑以及安装成本过高等问题,很难获取这些数据。因此,构建一种能深度挖掘电力负荷数据时序特性和电器相关性的时序生成对抗网络。利用降维网络对所有电器有功功率序列组成的高维向量进行降维以降低计算的复杂度,通过复原网络将结果还原为高维向量。基于电器运行状态和深度学习的非侵入式分解方法,运用卷积神经网络-双向门控循环单元构建状态复杂电器的负荷分解回归模型,对状态简单电器利用深度神经网络构建负荷识别分类模型。通过对比其他数据生成方法,以及改变典型公开数据集中生成数据比例所得的负荷分解结果验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷分解 对抗生成网络 降维网络 卷积神经网络-双向门控循环单元 深度神经网络
在线阅读 下载PDF
基于神经网络和稳健估计的风电机组状态监测
12
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 长鼻浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
基于门控网络的军事装备控制指令语音识别研究 被引量:6
13
作者 柏财通 高志强 +1 位作者 李爱 崔翛龙 《计算机工程》 CAS CSCD 北大核心 2021年第7期301-306,共6页
军事装备无感控制是军事装备智能化建设进程中的一个重要研究方向,其中语音控制技术作为无人装备无感控制手段的关键组成部分,受到了越来越多的重视。为完成军事装备语音控制任务,设计一种基于门控网络的中文语音识别网络,并构建军事装... 军事装备无感控制是军事装备智能化建设进程中的一个重要研究方向,其中语音控制技术作为无人装备无感控制手段的关键组成部分,受到了越来越多的重视。为完成军事装备语音控制任务,设计一种基于门控网络的中文语音识别网络,并构建军事装备控制指令数据集,实现基于控制指令语音识别技术的军事装备控制。在传统卷积神经网络的结构基础上引入深度残差门控卷积网络,提高识别网络的准确性,同时通过多途径构建军事装备控制指令数据集,设计一套针对军事装备无感控制的语音识别方案。实验结果表明,该语音识别网络军事语音控制指令识别率可达87%,外接语言模型后可达92%,语音识别准确率高、误差率低,可完成军事装备的语音控制任务。 展开更多
关键词 语音识别 门控卷积神经网络 装备无感控制 长短时记忆网络 残差网络
在线阅读 下载PDF
基于CNN-GRU并联网络的海上风电支撑结构损伤识别
14
作者 李行健 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 EI CSCD 北大核心 2024年第20期229-237,共9页
利用振动响应和深度学习进行结构损伤识别时,会遇到需要较多测点数据、损伤识别准确率不高以及网络容易发生过拟合等问题。为此,提出了一种基于卷积神经网络-门控循环单元(convolutional neural networks-gated recurrent unit,CNN-GRU... 利用振动响应和深度学习进行结构损伤识别时,会遇到需要较多测点数据、损伤识别准确率不高以及网络容易发生过拟合等问题。为此,提出了一种基于卷积神经网络-门控循环单元(convolutional neural networks-gated recurrent unit,CNN-GRU)神经网络并联网络的结构损伤识别新方法。首先,对响应信号进行广义S变换(generalized S-transform,GST)得到其时频图像。然后,分别利用CNN和GRU从时频图像和响应信号中提取时频域特征和时序特征,并将时频域特征和时序特征拼接后输入全连接层和Softmax分类器中进行结构损伤识别。位移激励下的海上风电支撑结构模型试验数据验证结果表明,该方法仅需要一个测点的响应信号,与其他同类方法相比具有更高的识别准确率和效率。 展开更多
关键词 卷积神经网络-门控循环单元(CNN-GRU)并联网络 结构损伤识别 深度学习 海上风电支撑结构 广义S变换(GST)
在线阅读 下载PDF
针对说话人识别对抗样本生成方法研究
15
作者 马栋林 宋佳佳 +1 位作者 赵宏 陈伟杰 《电子测量技术》 北大核心 2024年第22期49-57,共9页
针对基于生成式的对抗样本生成方法生成的对抗样本真实性较低和攻击效果欠佳的问题,提出一种基于AdvGAN和CGAN的对抗样本生成方法ACGAN。首先,针对特定目标进行攻击,ACGAN通过在训练和攻击阶段引入额外的目标标签,生成具有针对性的频域... 针对基于生成式的对抗样本生成方法生成的对抗样本真实性较低和攻击效果欠佳的问题,提出一种基于AdvGAN和CGAN的对抗样本生成方法ACGAN。首先,针对特定目标进行攻击,ACGAN通过在训练和攻击阶段引入额外的目标标签,生成具有针对性的频域上的对抗样本。其次,在生成器和鉴别器中引入门控卷积神经网络,帮助ACGAN模型捕捉到更精确的数据特征,从而提高攻击成功率。最后,引入感知损失函数,最小化模型输出与目标输出在语音特征表示上的差异,提高生成样本的听觉质量。实验结果表明,在有目标攻击中相较于现有方法,ASR提高了1.5%,SNR和PESQ分别提高了10.5%和11.1%,证明了ACGAN在对抗样本生成领域的有效性和潜力。 展开更多
关键词 对抗样本 生成器 鉴别器 门控卷积神经网络 感知损失
在线阅读 下载PDF
基于多传感器信息融合和CNN-BIGRU-Attention模型的液压防水阀故障诊断方法 被引量:3
16
作者 肖遥 向家伟 +1 位作者 汤何胜 任燕 《机电工程》 CAS 北大核心 2024年第9期1517-1528,共12页
在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息... 在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息融合和卷积神经网络-双向门控循环单元-自注意力机制(CNN-BIGRU-Attention)模型的防水阀故障诊断方法。首先,考虑到单一传感器振动信号难以充分表达故障特征,该方法使用了3个传感器采集含噪声的振动信号,并进行了必要的预处理;其次,提取了信号的16个时域特征、5个频域特征以及3个时频域特征,并利用熵权法进行了特征融合,达到了增强特征的目的;然后,将融合的多维特征集输入到CNN-BIGRU-Attention模型中进行了特征识别;最后,利用实际的液压防水阀故障诊断实验,验证了该方法的有效性。研究结果表明:采用多传感器提取的特征更为全面,信息融合有助于捕捉更完整的隐藏数据特征,从而显著提高诊断的准确率;相较于其他特征识别方法,采用CNN-BIGRU-Attention模型的液压防水阀故障诊断准确率可分别提高6.7%、4.6%和14.2%,达到了96.86%,证明了该方法的有效性。该方法将先进的机器学习技术与实际工程应用相结合,为建筑工程问题提供了一种新颖、有效的解决方案。 展开更多
关键词 液压传动系统 液压防水阀 多传感器 滑动时间窗 TEAGER能量算子 熵权法 卷积神经网络-双向门控循环单元-自注意力机制模型
在线阅读 下载PDF
结合改进DRSE-GCNN的电力调度语声识别模型
17
作者 苌文涵 张云翔 +3 位作者 顾彬 相增辉 陈轩 李霁轩 《应用声学》 CSCD 北大核心 2024年第6期1243-1249,共7页
针对现有电力调度中语声识别方法存在的字识别错误率高和耗时长等问题,在分析语声识别技术的基础上,提出了一种改进的深度学习方法用于电力调度语声识别。将改进的深度残差收缩网络和改进的门控卷积神经网络相结合,通过改进的深度残差... 针对现有电力调度中语声识别方法存在的字识别错误率高和耗时长等问题,在分析语声识别技术的基础上,提出了一种改进的深度学习方法用于电力调度语声识别。将改进的深度残差收缩网络和改进的门控卷积神经网络相结合,通过改进的深度残差收缩网络提取有效特征,在通过堆叠改进的门控卷积神经网络来获取有效上下文信息。通过试验对所提方法的性能进行分析,验证其优越性。结果表明,所提方法与常规识别方法相比,在模型参数、字识别错误率和平均识别时间上均具有一定的优势,模型参数量为6.48 M,字识别错误率为2.87%,平均识别时间为0.187 s。该研究为电力调度语言识别方法的发展提供了一定的参考。 展开更多
关键词 电力调度 语言识别 深度残差收缩网络 门控卷积神经网络 字识别错误率
在线阅读 下载PDF
基于模糊聚类和CNN-BIGRU的轨道电路故障预测 被引量:3
18
作者 林俊亭 王帅 +1 位作者 刘恩东 王阳 《振动.测试与诊断》 EI CSCD 北大核心 2023年第3期500-507,619,620,共10页
针对轨道电路稳态环境下故障诊断时效性不足的问题,提出一种基于Gath-Geva(GG)模糊聚类对轨道电路退化状态进行划分,并利用卷积神经网络(convolutional neural network,简称CNN)和双向门控循环单元(bi-directional gated recurrent unit... 针对轨道电路稳态环境下故障诊断时效性不足的问题,提出一种基于Gath-Geva(GG)模糊聚类对轨道电路退化状态进行划分,并利用卷积神经网络(convolutional neural network,简称CNN)和双向门控循环单元(bi-directional gated recurrent unit,简称BIGRU)进行轨道电路故障预测的方法。首先,通过集中监测设备获取ZPW-2000轨道电路各类故障发生前一定时间内的正常工作数据;其次,通过核主成分分析进行特征降维和GG模糊聚类对轨道电路性能退化状态进行阶段划分,识别不同的退化状态;最后,利用CNN-BIGRU混合神经网络挖掘轨道电路不同故障类型数据特征,对轨道电路退化状态所对应的故障类型进行预测。实验结果表明,该算法可以精确划分轨道电路退化状态并实现故障预测,CNN-BIGRU预测模型分类精确度可达97.62%,运行时间仅为13.18 s,能够为轨道电路的多模式健康状态识别提供一种有效的方法。 展开更多
关键词 轨道电路 GG模糊聚类 退化状态划分 卷积神经网络-双向门控循环单元 故障预测
在线阅读 下载PDF
基于S2S-CNN-GRU的机场离港航班延误预测 被引量:5
19
作者 李善梅 周相志 《中国安全科学学报》 CAS CSCD 北大核心 2023年第8期93-100,共8页
为解决空中交通管理中机场离港航班延误预测难题,采用序列到序列(S2S)框架将门控单元循环网络(GRU)和卷积神经网络(CNN)相结合,提出一种基于S2S-CNN-GRU的航班延误预测模型,主要采用序列到序列的框架结构,利用CNN来捕获机场航班延误状... 为解决空中交通管理中机场离港航班延误预测难题,采用序列到序列(S2S)框架将门控单元循环网络(GRU)和卷积神经网络(CNN)相结合,提出一种基于S2S-CNN-GRU的航班延误预测模型,主要采用序列到序列的框架结构,利用CNN来捕获机场航班延误状态的结构化特征,作为编码器的输入,利用GRU捕获延误状态的时间特征,并作为解码器输出预测结果,提高预测的准确性。采用美国实际数据检验该模型的有效性,并同其他模型进行对比。结果表明:基于S2S-CNN-GRU的航班延误预测模型预测的平均绝对误差(MAE)为3.03,均方根误差(RMSE)为5.82,明显优于其他模型的预测效果。 展开更多
关键词 序列到序列(S2S)-卷积神经网络(CNN)-门控循环单元(GRU)模型 离港航班 延误预测 神经网络 特征提取
在线阅读 下载PDF
基于CNN-BiGRU-NN模型的短期负荷预测方法 被引量:43
20
作者 曾囿钧 肖先勇 +1 位作者 徐方维 郑林 《中国电力》 CSCD 北大核心 2021年第9期17-23,共7页
为充分挖掘蕴含在大量采集数据中的有效信息,提高短期负荷预测精度,提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)、全连接神经网络(NN)的混合模型的短期负荷预测方法,将海量的历史负荷数据、气象信息、日期信息按时间滑动... 为充分挖掘蕴含在大量采集数据中的有效信息,提高短期负荷预测精度,提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)、全连接神经网络(NN)的混合模型的短期负荷预测方法,将海量的历史负荷数据、气象信息、日期信息按时间滑动窗口构造特征图作为输入,先利用CNN提取特征图中的有效信息,构造特征向量,再将特征向量作为BiGRU-NN网络的输入,采用BiGRU-NN网络进行短期负荷预测。以2016年举办的全国第九届电工数学建模竞赛试题A题中的负荷数据作为实际算例,实验结果表明:该方法与DNN神经网络、GRU神经网络、CNN-LSTM神经网络短期负荷预测法相比,有更高的预测精度。 展开更多
关键词 电力系统 短期负荷预测 卷积神经网络 双向门控循环单元 卷积神经网络-双向门控循环单元神经网络混合模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部