期刊文献+
共找到534篇文章
< 1 2 27 >
每页显示 20 50 100
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
1
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 深度学习
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
2
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络预测盾构隧道施工引起的地面沉降 被引量:10
3
作者 黄茂庭 徐金明 《城市轨道交通研究》 北大核心 2024年第6期166-171,共6页
[目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测... [目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测。[方法]以某地铁施工区间地面沉降监测数据为研究对象,使用CNN对影响参数(压缩模量、黏聚力、内摩擦角、泊松比、土层厚度、隧道埋深和施工参数)与地面沉降监测值进行连接,使用LSTM神经网络对地面沉降进行分析,建立了基于CNN-LSTM联合神经网络的地面沉降预测模型,探讨了同时考虑多个因素对地面沉降预测值的影响。[结果及结论]使用CNN对地面沉降相关的影响参数特征提取效果较好;所建CNN-LSTM模型的准确率比单独使用LSTM模型的准确率提高了3%、比传统BP(反向传播)神经网络模型准确率提高了9%;所建CNN-LSTM模型,对单测点短时间地面沉降预测准确率达到93%,预测值与监测值吻合较好。 展开更多
关键词 盾构隧道施工 地面沉降 预测 卷积神经网络 长短期记忆神经网络
在线阅读 下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测 被引量:3
4
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号 被引量:1
5
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏波 动脉血压波 卷积神经网络 长短期记忆神经网络 混合神经网络
在线阅读 下载PDF
卷积-长短期记忆神经网络超宽带定位方法 被引量:10
6
作者 李大占 宁一鹏 +2 位作者 赵文硕 孙英君 王川阳 《导航定位学报》 CSCD 北大核心 2024年第1期97-105,共9页
针对室内视距环境下超宽带(UWB)观测值中的测距误差影响定位精度的问题,提出一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)相结合的UWB测距误差改正模型:将基站与标签之间的测距值和Chan算法解算的标签初始坐标作为卷积神经网络(CNN... 针对室内视距环境下超宽带(UWB)观测值中的测距误差影响定位精度的问题,提出一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)相结合的UWB测距误差改正模型:将基站与标签之间的测距值和Chan算法解算的标签初始坐标作为卷积神经网络(CNN)的输入,借助CNN良好的数据特征提取能力,充分挖掘UWB测距值的特征;然后利用长短期记忆网络(LSTM)进行进一步的特征学习,并进行训练和预测UWB测距值,以减少测距误差对UWB测距值精度的影响;最后,利用高斯-牛顿迭代算法求解出最终的UWB定位结果,同时,建立多项式和指数函数UWB测距误差改正模型,并与本文方法进行对比分析。实验结果表明,在静态和动态实验下,基于CNN-LSTM网络模型结果的精度均优于其他2种模型,证明该算法可有效降低测距误差,提高UWB的定位精度。 展开更多
关键词 超宽带(UWB) 定位 卷积神经网络长短期记忆网络(cnn-lstm) 多项式函数 指数函数
在线阅读 下载PDF
基于足底压力和卷积长短期记忆神经网络的前交叉韧带断裂智能辅助诊断
7
作者 李玳 王天牧 +5 位作者 张思 秦跃 谢福贵 刘辛军 聂振国 黄红拾 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期109-117,共9页
提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,P... 提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,PressureConvLSTM模型对前交叉韧带断裂的辅助诊断,能够达到95%的预测准确度;与卷积神经网络等其他模型相比,准确度得到大幅度提升。 展开更多
关键词 智能诊断 前交叉韧带断裂 足底压力 深度学习 卷积长短期记忆神经网络
在线阅读 下载PDF
基于多源数据融合与卷积长短期记忆神经网络的聚合物挤出过程熔体密度监测方法 被引量:2
8
作者 张彬彬 陈祝云 +1 位作者 张飞 晋刚 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期54-62,共9页
聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚... 聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚合物挤出加工过程中,由于数据类型、工艺参数、操作环境等多变性因素的影响,传统的机器学习方法可能难以捕捉聚合物加工中不同输入参数和输出质量参数之间的复杂关系,使得监测任务难以获得理想的准确性。本文提出了一种基于多源数据融合与卷积长短期记忆神经网络(CNN–LSTM)的熔体密度监测方法,用于在线监测聚碳酸酯–丙烯腈–丁二烯–苯乙烯共聚物(PC/ABS)共混体系的熔体密度。首先,通过实时采集安装在挤出机模头处的近红外、拉曼及超声3种传感器数据,对3种传感数据进行预处理并融合后作为输入;然后,通过合理设计的网络结构,构建CNN–LSTM监测模型,利用CNN的特征提取能力与LSTM的预测能力,最终实现对聚合物共混过程中的熔体密度的实时监测。基于独立开发的多源传感数据实时采集装置获取的数据,利用所提方法对PC/ABS共混挤出过程的熔体密度进行实时监测,结果表明:本文方法能够准确监测聚合物熔体密度,其在测试集上的均方根误差和决定系数分别为0.975 5、0.006 3 g/cm3,比传统的卷积神经网络方法、长短期记忆网络方法、岭回归方法、偏最小二乘回归方法、多层感知机方法和支持向量机回归方法具有更高的预测精度;本文方法的10次输入平均预测时间为1.523 5 s,能够满足实际生产过程的实时监测。综上所述,所提出的基于多源数据融合与CNN–LSTM的熔体密度监测方法显著提高了聚合物挤出过程中熔体密度的实时监测精度,为挤出过程中聚合物的质量提供了可靠的技术支持。 展开更多
关键词 聚合物挤出加工 熔体密度 多传感器数据融合 卷积长短期记忆神经网络 在线监测
在线阅读 下载PDF
卷积循环神经网络的高光谱图像解混方法 被引量:2
9
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:33
10
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于卷积长短期记忆神经网络的短期风功率预测 被引量:44
11
作者 栗然 马涛 +3 位作者 张潇 回旭 刘英培 尹晓钢 《太阳能学报》 EI CAS CSCD 北大核心 2021年第6期304-311,共8页
提出一种基于卷积长短期记忆神经网络(CNN-LSTM)的短期风功率预测模型。该模型以风电场风功率历史数据以及风速风向等数值天气预报(NWP)数据为输入对风功率进行预测。首先,利用主成分分析法(PCA)对原始多维气象数据变量进行预处理,然后... 提出一种基于卷积长短期记忆神经网络(CNN-LSTM)的短期风功率预测模型。该模型以风电场风功率历史数据以及风速风向等数值天气预报(NWP)数据为输入对风功率进行预测。首先,利用主成分分析法(PCA)对原始多维气象数据变量进行预处理,然后将处理过的气象数据和历史风功率数据通过卷积网络实现对数据的特征提取和进一步的数据降维,再通过长短期记忆网络实现对数据的拟合,并在神经网络的训练过程中引入DropConnect技术减小模型中的过拟合现象,最终实现风功率的精确预测。以中国西北某风电场的实测数据进行验证,结果表明所提方法能有效对风功率进行预测,较BP神经网络和支持向量机(SVM)有更高的预测精度。 展开更多
关键词 风功率预测 主成分分析 长短期记忆 卷积神经网络 DropConnect技术
在线阅读 下载PDF
基于长短期记忆和卷积神经网络的语音情感识别 被引量:28
12
作者 卢官明 袁亮 +2 位作者 杨文娟 闫静杰 李海波 《南京邮电大学学报(自然科学版)》 北大核心 2018年第5期63-69,共7页
为了提高语音情感识别的准确率,提出了一种基于长短期记忆(LSTM)和卷积神经网络(CNN)的语音情感识别方法。首先提取语音信号的梅尔(Mel)频谱序列作为LSTM网络的输入,利用LSTM网络提取语音信号的时域上下文特征,在此基础上再利用CNN从低... 为了提高语音情感识别的准确率,提出了一种基于长短期记忆(LSTM)和卷积神经网络(CNN)的语音情感识别方法。首先提取语音信号的梅尔(Mel)频谱序列作为LSTM网络的输入,利用LSTM网络提取语音信号的时域上下文特征,在此基础上再利用CNN从低层特征中学习提取更高层次的情感特征,并完成对语音信号的情感分类。在eNTRAFACE’05、RML和AFEW6. 0三种不同的情感数据库上进行了情感识别测试,实验结果表明,文中提出的方法在上述三种数据库上获得的平均识别率分别为49. 15%,85. 38%和37. 90%。此外,和传统的语音情感识别方法以及基于LSTM或CNN的语音情感识别方法进行了对比,验证了文中提出方法的有效性。 展开更多
关键词 语音情感识别 长短期记忆网络 卷积神经网络 人机交互
在线阅读 下载PDF
基于注意力机制的卷积神经网络-长短期记忆网络的短期风电功率预测 被引量:29
13
作者 姚越 刘达 《现代电力》 北大核心 2022年第2期212-218,共7页
为了提高风电功率的预测精度,针对风电数据间歇性与时序性的特点,提出了一种基于注意力机制的卷积神经网络-长短期记忆(convolutional neural networks-long short-term memory,CNN-LSTM)网络预测模型。首先利用CNN提取风电数据动态变... 为了提高风电功率的预测精度,针对风电数据间歇性与时序性的特点,提出了一种基于注意力机制的卷积神经网络-长短期记忆(convolutional neural networks-long short-term memory,CNN-LSTM)网络预测模型。首先利用CNN提取风电数据动态变化的多维特征,然后将特征向量构造成时序形式并作为LSTM网络的输入,最后使用注意力机制进行优化,通过赋予LSTM网络隐含层不同的权重,增强重要信息的作用,完成风电功率预测。采用国内某风电场的风电数据进行实验,结果表明该模型比支持向量机、LSTM模型、CNN-LSTM模型具有更好的预测精度。 展开更多
关键词 风电功率预测 卷积神经网络 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于卷积-长短期记忆神经网络的抽水蓄能机组健康性能趋势预测 被引量:3
14
作者 单亚辉 王浩 +1 位作者 吴根平 刘颉 《水电能源科学》 北大核心 2023年第8期185-187,184,共4页
为准确掌握抽水蓄能机组的健康性能水平,提出基于卷积-长短期记忆神经网络(CNN-LSTM)的机组健康性能趋势预测方法。首先,为有效地刻画机组的运行特性,构建基于高斯过程回归的机组健康状态模型;然后,设计可量化机组健康性能的指标因子;... 为准确掌握抽水蓄能机组的健康性能水平,提出基于卷积-长短期记忆神经网络(CNN-LSTM)的机组健康性能趋势预测方法。首先,为有效地刻画机组的运行特性,构建基于高斯过程回归的机组健康状态模型;然后,设计可量化机组健康性能的指标因子;进一步融合CNN良好的局部特征提取能力和LSTM在时间序列预测方面的优势,提出基于CNN-LSTM的预测模型。对国内某抽水蓄能电站机组监测数据进行的试验结果表明,所提方法可较好地预测机组健康性能的发展趋势。 展开更多
关键词 抽水蓄能机组 趋势预测 健康性能指标 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于一维卷积神经网络与长短期记忆网络结合的电池荷电状态预测方法 被引量:18
15
作者 倪水平 李慧芳 《计算机应用》 CSCD 北大核心 2021年第5期1514-1521,共8页
针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNNLSTM模型。1D CNN-LSTM模型将电池的电流... 针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNNLSTM模型。1D CNN-LSTM模型将电池的电流、电压和电阻映射到目标值SOC。首先,通过一层一维卷积层从样本数据中提取出高级数据特征,并充分地利用输入数据的特征信息;其次,使用一层LSTM层保存历史输入信息,从而有效地预防重要信息的丢失;最后,通过一层全连接层输出电池SOC预测结果。使用电池的多次循环充放电实验数据训练提出的模型,分析对比不同超参数设置下1D CNN-LSTM模型的预测效果,并通过训练模型来调节模型的权重系数和偏置参数,从而确定最优的模型设置。实验结果表明,1D CNN-LSTM模型具有准确且稳定的电池SOC预测效果。该模型的平均绝对误差(MAE)、均方误差(MSE)和最大预测误差分别为0.402 7%、0.002 9%和0.99%。 展开更多
关键词 一维卷积神经网络 循环神经网络 长短期记忆 荷电状态预测 电池
在线阅读 下载PDF
联合卷积神经网络与长短期记忆深度网络的桥梁损伤识别 被引量:14
16
作者 单德山 石磊 谭康熹 《桥梁建设》 EI CSCD 北大核心 2023年第4期41-46,共6页
为准确评估桥梁结构状态,提升损伤识别效率,提出基于联合卷积神经网络(CNN)与长短期记忆(LSTM)深度网络的桥梁损伤识别方法,并用振动台试验数据进行验证。结合CNN空间特征和LSTM时间特征提取能力,构建桥梁结构损伤识别架构;提取5类时频... 为准确评估桥梁结构状态,提升损伤识别效率,提出基于联合卷积神经网络(CNN)与长短期记忆(LSTM)深度网络的桥梁损伤识别方法,并用振动台试验数据进行验证。结合CNN空间特征和LSTM时间特征提取能力,构建桥梁结构损伤识别架构;提取5类时频域损伤特征,经对比分析后,采用结合平均频率和平均能量的组合特征进行损伤识别;基于振动台试验数据及其有限元模型数据识别了斜拉桥模型的损伤,并将识别结果分别与CNN、LSTM的识别结果对比。结果表明:采用联合CNN与LSTM深度网络建立的损伤识别方法可有效识别出桥梁的损伤位置和损伤程度,且偏差小,识别结果优于CNN、LSTM;未布置传感器的位置损伤识别精度较低;轻微损伤识别准确率相对较低。 展开更多
关键词 桥梁工程 卷积神经网络 长短期记忆深度网络 损伤识别 损伤程度 空间特征 时间特征 振动台试验
在线阅读 下载PDF
基于卷积神经网络和LSTM网络的矿用变压器故障诊断
17
作者 孙朋 刘超然 马建民 《金属矿山》 北大核心 2025年第6期168-173,共6页
矿用变压器作为矿山电力系统的核心设备,其运行状态直接影响矿山生产的安全性与效率。然而,由于矿山环境的复杂性和设备长期运行的特殊性,变压器故障诊断面临着高噪声、数据不平衡以及故障类型多样等挑战。为此,提出了一种基于卷积神经... 矿用变压器作为矿山电力系统的核心设备,其运行状态直接影响矿山生产的安全性与效率。然而,由于矿山环境的复杂性和设备长期运行的特殊性,变压器故障诊断面临着高噪声、数据不平衡以及故障类型多样等挑战。为此,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的混合模型(CNN-LSTM),用于矿用变压器的故障诊断。首先利用CNN对变压器运行数据进行特征提取,有效捕捉数据中的空间特征;然后采用LSTM对提取的特征进行时序建模,识别数据中的动态变化模式。试验结果表明:CNN-LSTM模型对于多个故障类型的平均诊断准确率达到了92.82%以上,显著优于传统诊断方法和单一神经网络模型,反映出该模型在提高诊断精度和鲁棒性方面具有显著优势,具有一定的应用前景。 展开更多
关键词 矿用变压器 故障诊断 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于深度卷积-长短期记忆神经网络的整车道路载荷预测 被引量:2
18
作者 罗欢 胡浩炬 余家皓 《汽车技术》 CSCD 北大核心 2021年第7期46-51,共6页
针对传统道路载荷获取方法耗费周期长、成本高,且无法高效应用于整车参数变化后的新车型的问题,利用现有多款车型的载荷数据库,通过建立可确定整车结构参数、运行工况与道路载荷之间关联关系的深度卷积-长短期记忆神经网络(DCNN-LSTM)模... 针对传统道路载荷获取方法耗费周期长、成本高,且无法高效应用于整车参数变化后的新车型的问题,利用现有多款车型的载荷数据库,通过建立可确定整车结构参数、运行工况与道路载荷之间关联关系的深度卷积-长短期记忆神经网络(DCNN-LSTM)模型,提出了基于数据驱动的整车轮心载荷预测方法。对比试验结果表明,该方法预测的整车轮心载荷与试验场采集数据非常接近,有利于逐步取消路谱采集试验并极大地提高整车耐久性分析的效率。 展开更多
关键词 道路载荷 深度学习 数据库 疲劳耐久分析 深度卷积神经网络 长短期记忆
在线阅读 下载PDF
卷积与长短期记忆网络在火灾源强实时预测中的应用 被引量:3
19
作者 孟晓静 陈佳静 《安全与环境学报》 CAS CSCD 北大核心 2024年第1期152-158,共7页
针对火灾场景中火源位置及强度实时、准确识别困难的问题,利用卷积神经网络(Convolutional Neural Networks,CNN)与长短期记忆(Long Short-Term Memory,LSTM)网络的算法优势,构建一种火灾源强实时预测模型,该模型通过建筑内温度传感器... 针对火灾场景中火源位置及强度实时、准确识别困难的问题,利用卷积神经网络(Convolutional Neural Networks,CNN)与长短期记忆(Long Short-Term Memory,LSTM)网络的算法优势,构建一种火灾源强实时预测模型,该模型通过建筑内温度传感器接收的序列数据,实时、准确地预测火灾场景中的火源位置及强度信息。采用火灾动力学模拟软件(Fire Dynamics Simulator,FDS)模拟火灾场景,获得温度传感器实时接收的序列数据,建立火灾场景数据库,进行火灾场景数据分析并对火灾源强实时预测模型完成训练,通过实例验证该模型的准确性、及时性和鲁棒性。结果表明,该模型能够通过较短长度样本数据实时、准确预测火灾场景中火源位置及强度,预测准确率为99.18%,在温度传感器间隔损坏且损坏率不高于70%时,预测准确率仍可达到95.10%以上。 展开更多
关键词 安全工程 卷积神经网络 长短期记忆网络 火灾源强 实时预测
在线阅读 下载PDF
基于改进一维卷积和双向长短期记忆神经网络的故障诊断方法 被引量:15
20
作者 董永峰 孙跃华 +2 位作者 高立超 韩鹏 季海鹏 《计算机应用》 CSCD 北大核心 2022年第4期1207-1215,共9页
针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自... 针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自动提取以及振动信号的分类。首先,采用自适应白噪声的完整经验模态分解(CEEMDAN)技术对原始振动信号进行预处理;其次,构建1DCNN-BiLSTM双通道模型,将处理后信号输入双向长短期记忆(BiLSTM)神经网络模型和一维卷积神经网络(1DCNN)模型两个通道,从而对信号的时序相关性特征、局部空间的非相关性特征和弱周期性规律进行充分提取;然后,针对信号夹杂强噪声的问题,对压缩与激励网络(SENet)模块进行改进并将其作用于两个不同的通道;最后,输入全连接层将双通道提取的特征进行融合并借助Softmax分类器实现对设备故障的精确识别。使用凯斯西储大学轴承数据集进行实验,结果表明改进后的SENet模块同时作用于1DCNN通道和stacked BiLSTM通道,1DCNN-BiLSTM双通道模型在保证快速收敛的情况下有最高诊断精度96.87%,优于传统单通道模型,有效提高了机械设备故障诊断效率。 展开更多
关键词 注意力机制 一维卷积神经网络 双向长短期记忆神经网络 双通道 故障诊断
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部