为了解决复杂环境中异常检测的问题,提出一种基于深度学习的检测方法。首先,通过引入(you only look once,YOLO)检测,将卷积神经网络回归法提取的物体时空特征,输入到长短期记忆模型(LSTM),追踪复杂环境中个体的运动轨迹。然后,评估相...为了解决复杂环境中异常检测的问题,提出一种基于深度学习的检测方法。首先,通过引入(you only look once,YOLO)检测,将卷积神经网络回归法提取的物体时空特征,输入到长短期记忆模型(LSTM),追踪复杂环境中个体的运动轨迹。然后,评估相邻个体间运动轨迹的依赖性。最后,采用编码-解码框架训练LSTM模型,预测物体未来的运动轨迹;根据物体未来运动轨迹的异常概率,最终完成异常检测。实验结果表明,解决了复杂环境中运动物体间的相互干扰问题;在时间和空间鲁棒性评估上,优于其他轨迹追踪的方法,从而证明了本方法的有效性和可行性。展开更多
为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时...为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时采集的驾驶员、车辆和道路环境等多模态数据,对驾驶员当前健康状态进行估计;最后针对预设健康目标,为驾驶员提供可执行的行为建议,实现对驾驶员健康状态的导航优化.在最关键的实时监测环节,提出基于注意力的卷积神经网络(convolutional neural network,CNN)-长短期记忆网络(long short term memory,LSTM)的多模态融合模型,实现对驾驶员压力、情绪和疲劳3个方面的健康状态估计.在私有数据集和公开数据集上分别开展的实验验证均获得高于90%的检测准确率.实验结果表明,提出的模型和方法可以实时准确监测驾驶员的压力、情绪和疲劳状态,为实现驾驶员的个性化健康导航系统提供有力支撑.展开更多
文摘为了解决复杂环境中异常检测的问题,提出一种基于深度学习的检测方法。首先,通过引入(you only look once,YOLO)检测,将卷积神经网络回归法提取的物体时空特征,输入到长短期记忆模型(LSTM),追踪复杂环境中个体的运动轨迹。然后,评估相邻个体间运动轨迹的依赖性。最后,采用编码-解码框架训练LSTM模型,预测物体未来的运动轨迹;根据物体未来运动轨迹的异常概率,最终完成异常检测。实验结果表明,解决了复杂环境中运动物体间的相互干扰问题;在时间和空间鲁棒性评估上,优于其他轨迹追踪的方法,从而证明了本方法的有效性和可行性。
文摘为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时采集的驾驶员、车辆和道路环境等多模态数据,对驾驶员当前健康状态进行估计;最后针对预设健康目标,为驾驶员提供可执行的行为建议,实现对驾驶员健康状态的导航优化.在最关键的实时监测环节,提出基于注意力的卷积神经网络(convolutional neural network,CNN)-长短期记忆网络(long short term memory,LSTM)的多模态融合模型,实现对驾驶员压力、情绪和疲劳3个方面的健康状态估计.在私有数据集和公开数据集上分别开展的实验验证均获得高于90%的检测准确率.实验结果表明,提出的模型和方法可以实时准确监测驾驶员的压力、情绪和疲劳状态,为实现驾驶员的个性化健康导航系统提供有力支撑.