期刊文献+
共找到307篇文章
< 1 2 16 >
每页显示 20 50 100
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
1
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
2
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 多通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
3
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于CNN-GRU组合神经网络的锂电池寿命预测模型研究
4
作者 张安安 谢琳惺 杨威 《电测与仪表》 北大核心 2025年第7期77-84,共8页
针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从... 针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从锂电池充电和放电实验中提取恒流充电时间间隔、恒压充电时间间隔、放电温度峰值时间及循环次数四种间接健康因子,建立Pearson及Spearman相关系数;构建基于CNN-GRU组合神经网络的锂电池寿命预测模型;通过实际数据验证提取健康因子的合理性,并将预测结果与支持向量机模型、长短期记忆(long short-term memory,LSTM)模型、GRU模型、CNN-LSTM模型对比分析,验证所提模型的优越性及有效性。 展开更多
关键词 锂电池 健康因子 相关系数 卷积神经网络 门控循环单元
在线阅读 下载PDF
基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测 被引量:19
5
作者 方娜 李俊晓 +1 位作者 陈浩 李新新 《现代电力》 北大核心 2022年第4期441-448,共8页
为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple line... 为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。 展开更多
关键词 变分模态分解 卷积神经网络 双向门控循环单元 多元线性回归 负荷预测
在线阅读 下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:17
6
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
在线阅读 下载PDF
基于卷积神经网络和双向门控循环单元网络注意力机制的情感分析 被引量:15
7
作者 张腾 刘新亮 高彦平 《科学技术与工程》 北大核心 2021年第1期269-274,共6页
传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情... 传统的情感分析方法不能获取全局特征,以及否定词、转折词和程度副词的出现影响句子极性判断。在深度学习方法基础上提出了基于卷积神经网络和双向门控循环单元网络注意力机制的短文本情感分析方法。将情感积分引入卷积神经网络,利用情感词自身信息,通过双向门控循环网络模型获取全局特征,对影响句子极性的否定词、转折词和程度副词引入注意力机制实现对这类词的重点关注,提取影响句子极性的重要信息。实验结果表明,该模型与现有相关模型相比,有效提高情感分类的准确率。 展开更多
关键词 深度学习 双向门控循环单元(Bi-GRU) 注意力机制 卷积神经网络 情感分析
在线阅读 下载PDF
基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测 被引量:13
8
作者 林靖皓 秦亮曦 +1 位作者 苏永秀 秦川 《计算机应用》 CSCD 北大核心 2020年第S01期51-55,共5页
针对影响芒果产量的相关气象要素繁多,它们与产量之间的关联关系复杂、难以用数学函数准确地描述的问题,提出一种基于自注意力机制具有长短期记忆功能的双向门控循环单元和卷积神经网络组合(Self-attention CBiGRU)模型。首先,利用CNN... 针对影响芒果产量的相关气象要素繁多,它们与产量之间的关联关系复杂、难以用数学函数准确地描述的问题,提出一种基于自注意力机制具有长短期记忆功能的双向门控循环单元和卷积神经网络组合(Self-attention CBiGRU)模型。首先,利用CNN卷积层(1D CNN)提取局部特征;其次将Self-attention机制用于进一步提取依赖特征,然后双向门控循环单元(BiGRU)会充分考虑年份之间的关联性,学习长期依赖特征;最后,利用广西某地3个气象站所收集到的24个芒果生产周期年份(从前一年第22旬到当年第21旬)每旬9个气象要素及芒果产量数据进行分析建模,建立了芒果产量预测Self-attention C-BiGRU模型。实验结果表明,Self-attention C-BiGRU模型预测的产量与实际产量的均方根误差为10.67,比支持向量回归(SVR)、误差后向传播神经网络(BPNN)、门控循环单元(GRU)、基于注意力机制的双向门控循环单元(BiGRU-Attention)、门控循环单元和卷积神经网络组合模型(GRU-CNN)、双向门控循环单元和卷积神经网络组合模型(C-BiGRU)分别平均降低了37.7%、42.1%、17.6%、4.1%、5.3%和5.9%。Selfattention C-BiGRU模型具有较高的预测准确性,对提升广西芒果产业发展、推进农业信息化有重要意义。 展开更多
关键词 芒果 产量预测 Self-attention 双向门控循环单元 卷积神经网络 循环神经网络
在线阅读 下载PDF
基于SSA-BiGRU-CNN神经网络和波动数据修正的电动汽车短期负荷预测模型
9
作者 张钰声 曹敏 +1 位作者 雷宇 李龙 《电网与清洁能源》 北大核心 2025年第2期67-74,共8页
为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network... 为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network,CNN)的电动汽车短期负荷预测模型。构建BiGRU-CNN模型,并应用麻雀搜索算法(sparrowsearch algorithm,SSA)对BiGRU神经网络参数进行优化;利用BiGRU神经网络充分学习历史负荷数据的前、后向联系,采用CNN对历史负荷数据进行局部优化,并通过全连接层进行预测;考虑到天气数据内部规律性不强,采用BiGRU-CNN神经网络对天气数据所带来的负荷波动进行误差预测和修正。以陕西某区域电动汽车充电站为例,分别预测预见期为4 h和24 h的电动汽车负荷,实验结果表明,所提模型无论在工作日还是双休日都具有很高的预测精度,验证了所提方法的有效性。 展开更多
关键词 电动汽车 负荷预测 双向门控循环单元 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
改进一维卷积神经网络与双向门控循环单元的轴承故障诊断研究 被引量:13
10
作者 杨云 丁磊 张昊宇 《机械科学与技术》 CSCD 北大核心 2023年第4期538-545,共8页
针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新... 针对传统智能故障诊断依赖于人工经验进行特征提取和传统卷积神经网络(Convolutional neural networks, CNN)参数过多、训练量过大且无法充分利用时间序列信息的缺点,提出一种基于改进一维卷积神经网络与双向门控循环单元的深度学习新算法。首先,该方法利用一维卷积神经网络自提取能力进行特征提取,同时设计了一个全局均值池化层替换传统卷积神经网络的全连接层,减少参数数量;其次,引入双向门控循环单元学习特征信号中的时间序列关系;最后,通过支持向量机替换传统CNN中的Softmax层进行故障分类,进一步提高诊断的准确率。实验表明,该方法将诊断的准确率提升至99.8%,并且加快了诊断的速度。通过与其他方法的对比,证明了该方法有着更高的准确率,更快的诊断速度,更好的鲁棒性。 展开更多
关键词 轴承故障诊断 卷积神经网络 双向门控循环单元 支持向量机
在线阅读 下载PDF
基于卷积神经网络与门控循环单元的气液两相流流型识别方法 被引量:7
11
作者 张立峰 王智 吴思橙 《计量学报》 CSCD 北大核心 2022年第10期1306-1312,共7页
提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网... 提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网络输入,对流型进行识别。分析了输入序列长度对CNN-GRU、CNN及GRU网络分类准确的影响,确定了最佳输入向量维度分别为60、65及50,使用实验数据对3种网络进行训练、测试,结果表明,CNN-GRU网络分类准确率最高,平均流型识别准确率可达99.40%。 展开更多
关键词 计量学 流型识别 离散余弦变换 卷积神经网络 门控循环单元 电阻层析成像
在线阅读 下载PDF
融合一维卷积神经网络和双向门控循环单元的APM车辆轮胎径向载荷识别方法 被引量:5
12
作者 曾俊玮 季元进 +3 位作者 任利惠 葛方顺 孙泽良 黄章行 《中国机械工程》 EI CAS CSCD 北大核心 2023年第3期359-368,共10页
针对轮胎载荷直接测量昂贵复杂及传统载荷识别方法精度低、鲁棒性差的现实,提出了一种融合一维卷积神经网络(1D CNN)和双向门控循环单元(BiGRU)的胶轮车辆轮胎径向载荷识别方法。充分考虑轮胎径向载荷数据的先验信息,以车辆振动响应、... 针对轮胎载荷直接测量昂贵复杂及传统载荷识别方法精度低、鲁棒性差的现实,提出了一种融合一维卷积神经网络(1D CNN)和双向门控循环单元(BiGRU)的胶轮车辆轮胎径向载荷识别方法。充分考虑轮胎径向载荷数据的先验信息,以车辆振动响应、车体位姿、运行状态等多源信息构建特征集并经特征选择保留有效的特征子集,构造多时间步输入-单时间步输出的样本用以网络训练。运用1D CNN提取信号的多维度空间特征并输入BiGRU中双向捕获时序特征,得到载荷预测的结果,结合预测精度、泛化性能、鲁棒性能修正理论模型。以APM300型车辆为例进行载荷识别,与传统算法相比,所提方法有效降低了载荷识别的误差,适用于不同运行工况,且能克服不同程度的测量噪声,在工程领域有现实应用价值。 展开更多
关键词 载荷识别 胶轮车辆 一维卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于深度门控循环单元神经网络的刀具磨损状态实时监测方法 被引量:15
13
作者 陈启鹏 谢庆生 +3 位作者 袁庆霓 黄海松 魏琴 李宜汀 《计算机集成制造系统》 EI CSCD 北大核心 2020年第7期1782-1793,共12页
为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改... 为监测生产加工过程中的刀具磨损状态,提出一种基于深度门控循环单元神经网络的轻量化状态监测模型。首先,预处理阶段对加速度传感器采集的时序信号进行小波阈值去噪,并将每次刀具进给产生的冗长信号划分为多个训练样本,以滤除噪声、改善算法的鲁棒性;然后,利用卷积神经网络(CNN)从时序信号输入中自适应地提取特征,构建深度双向门控循环单元(BiGRU)神经网络学习特征向量间的时序信息,并将Attention机制的思想引入其中,自适应地感知对磨损状态分类结果有关联的网络权重,并对其进行合理分配,避免因人工提取特征带来的复杂性和局限性。实验结果表明,所提方法能够对传感器采集的原始数据实时准确地预测刀具磨损状态,在识别精度和泛化能力上均达到了较好的效果,为实际工业场景下的刀具磨损状态监测提供了新的思路。 展开更多
关键词 刀具磨损状态 实时监测 小波去噪 卷积神经网络 双向门控循环单元 Attention机制
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
14
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
基于改进卷积-门控网络及Informer的两种中长期风电功率预测方法
15
作者 任鑫 王一妹 +3 位作者 王华 周利 葛畅 韩爽 《现代电力》 北大核心 2025年第3期542-549,共8页
为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络... 为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络-门控循环单元(convolutional neural network-gate recurrent unit,CNN-GRU)的时间尺度降维模型,通过CNN模块及GRU模块分别实现了长时间序列的融合和还原,以及降维后时间序列的预测;另一方面,基于Informer网络的多头注意力机制实现了序列长期依赖特征的挖掘。算例结果表明,两种方法在不同的场景下有着不同的适应性,在第10日的准确率和合格率分别达到74.21%/73.47%、71.81%/74.48%,与常规GRU、CNN、时间卷积网络模型相比,预测精度提升明显,预测效果良好。 展开更多
关键词 中长期功率预测 长序列预测 卷积神经网络-门控循环单元 INFORMER 多头注意力
在线阅读 下载PDF
基于双向门控循环单元的脱硫系统pH预测模型
16
作者 高钾 田雪峰 +2 位作者 彭献永 蒋甲丁 徐敏 《科学技术与工程》 北大核心 2025年第13期5535-5543,共9页
针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最... 针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最大信息系数分析得出13个特征值为输入变量,pH为输出变量,并建立浆液pH模型;最后,运行模型,并对结果进行评价。研究结果显示,与长短期记忆和门控循环相比,所选用的数学模型的平均绝对误差分别下降了11.95%、24.92%,均方根误差分别下降了10.64%、19.49%,决定系数分别提高了1.79%、3.08%。表明基于双向门控循环单元的pH预测模型具有较高的精确度和稳定性,具有工程应用价值,为现有脱硫塔pH预测模型提供了工程参考。 展开更多
关键词 石灰石-石膏湿法烟气脱硫系统 双向门控循环单元神经网络 预测模型 浆液pH
在线阅读 下载PDF
基于深度门控循环单元神经网络的短期风功率预测模型 被引量:106
17
作者 牛哲文 余泽远 +1 位作者 李波 唐文虎 《电力自动化设备》 EI CSCD 北大核心 2018年第5期36-42,共7页
随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进... 随着新能源的不断发展,大量大容量风电机组并入电网运行,给电网的安全可靠运行以及风力发电的可持续发展都提出了新的挑战。提出一种风功率预测模型,该模型以风电场风功率历史数据以及风速、风向等数值天气预报数据作为输入对风功率进行预测。考虑到风功率预测中输入数据的波动性和不确定性,在传统门控循环单元(GRU)神经网络的基础上融合卷积神经网络(CNN),以提高模型对原始数据的特征提取和降维能力,并引入dropout技术减少模型中的过拟合现象。工程实例分析表明,所提模型在预测准确度和运算速度方面均优于长短记忆神经网络模型。 展开更多
关键词 风功率预测 深度神经网络 门控循环单元 卷积神经网络
在线阅读 下载PDF
基于注意力卷积神经网络的视觉里程计 被引量:1
18
作者 高学金 牟雨曼 任明荣 《控制工程》 CSCD 北大核心 2024年第6期1060-1066,共7页
传统的视觉里程计(visual odometry,VO)要求图像含有大量的纹理信息,且求解过程较为复杂。针对以上问题提出基于注意力卷积神经网络的视觉里程计,对相机进行端到端的位姿估计,利用注意力机制提高模型估计轨迹的精度。首先,使用注意力-... 传统的视觉里程计(visual odometry,VO)要求图像含有大量的纹理信息,且求解过程较为复杂。针对以上问题提出基于注意力卷积神经网络的视觉里程计,对相机进行端到端的位姿估计,利用注意力机制提高模型估计轨迹的精度。首先,使用注意力-卷积神经网络(convolutional neural networks,CNN)模块提取图像特征;然后,将特征输入到门控循环单元(gated recurrent unit,GRU)学习图像的时序连接性;最后,通过全连接层降维输出相机位姿。在KITTI数据集上完成实验,并与其他方法进行对比,结果表明卷积网络中加入注意力机制可以有效提高轨迹估计的精度,且误差低于其他视觉里程计算法。 展开更多
关键词 视觉里程计 注意力机制 卷积神经网络 门控循环单元
在线阅读 下载PDF
基于改进卷积门控循环神经网络的刀具磨损状态识别 被引量:3
19
作者 潘晓明 周学良 吴琪文 《工具技术》 北大核心 2023年第7期146-152,共7页
刀具状态监测直接影响加工质量,对保障加工安全与提高生产效率起着重要作用。针对刀具加工信号分析较为复杂与深度学习求解耗时高的问题,提出一种基于改进卷积门控神经网络的刀具磨损状态识别网络模型。借助卷积神经网络(CNN)实现对数... 刀具状态监测直接影响加工质量,对保障加工安全与提高生产效率起着重要作用。针对刀具加工信号分析较为复杂与深度学习求解耗时高的问题,提出一种基于改进卷积门控神经网络的刀具磨损状态识别网络模型。借助卷积神经网络(CNN)实现对数据中空间特性的获取,并利用双向门控循环单元(BiGRU)中数据时序特征处理能力提取原始振动信号的序列特征,将极限学习机(ELM)作为分类器进行刀具磨损状态识别。实验结果表明,在刀具磨损数据样本数量有限的情况下,该方法对于信号数据有较强的分析能力,运算速度快,能达到更好的识别精度。 展开更多
关键词 刀具磨损 状态监测 卷积神经网络 双向门控循环单元网络 极限学习机
在线阅读 下载PDF
融合卷积神经网络与双向GRU的文本情感分析胶囊模型 被引量:11
20
作者 程艳 孙欢 +3 位作者 陈豪迈 李猛 蔡盈盈 蔡壮 《中文信息学报》 CSCD 北大核心 2021年第5期118-129,共12页
文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双... 文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双向GRU网络的文本情感分析胶囊模型。该模型首先使用多头注意力学习单词间的依赖关系、捕获文本中情感词,利用卷积神经网络和双向GRU提取文本不同粒度的情感特征,特征融合后输入全局平均池化层,在得到文本的实例特征表示的同时,针对每个情感类别结合注意力机制生成特征向量构建情感胶囊,最后根据胶囊属性判断文本情感类别。模型在MR、IMDB、SST-5及谭松波酒店评论数据集上进行实验,相比于其他基线模型具有更好的分类效果。 展开更多
关键词 文本情感分析 多头注意力 卷积神经网络 双向门控循环网络 情感胶囊
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部