期刊文献+
共找到11,327篇文章
< 1 2 250 >
每页显示 20 50 100
小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗 被引量:4
1
作者 魏乐 李承霖 +1 位作者 房方 刘渝斌 《电网技术》 北大核心 2025年第1期366-372,I0113-I0115,共10页
飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵... 飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵武电厂的飞轮运行数据进行预处理,并使用对抗生成网络进行小样本扩充;然后基于卷积神经网络建立损耗模型,使用改进的麻雀算法对模型超参数进行优化,并通过对比验证了该模型的优越性;最后通过仿真实验证明了该模型能够优化飞轮储能系统的出力,降低飞轮损耗。 展开更多
关键词 飞轮储能系统损耗 小样本学习 卷积神经网络 麻雀搜索算法 LOGISTIC混沌映射
在线阅读 下载PDF
基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计 被引量:1
2
作者 申江卫 折亦鑫 +4 位作者 舒星 刘永刚 魏福星 夏雪磊 陈峥 《储能科学与技术》 北大核心 2025年第4期1585-1595,共11页
用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随... 用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随机充电数据,使用单一卷积神经网络架构从中自适应提取老化特征,并采用蜣螂优化算法对其参数寻优,建立了多阶段模型。仅使用短时随机原始充电电压数据即可实现电池健康状态估计,且有效适用于不同充电模式和充电速率。实验测试验证结果表明,使用连续5 s(100个数据点)的原始电压时序数据,在恒流-恒压充电模式下,锂电池健康状态估计结果平均绝对误差小于2.07%,在多阶段恒流充电模式下,锂电池健康状态估计结果平均绝对误差小于1.22%。 展开更多
关键词 健康状态 随机充电 数据分割 卷积神经网络 锂离子电池
在线阅读 下载PDF
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
3
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
4
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
利用改进卷积神经网络的螺杆砂带磨削表面粗糙度预测 被引量:1
5
作者 杨赫然 张培杰 +2 位作者 孙兴伟 潘飞 刘寅 《中国机械工程》 北大核心 2025年第2期325-332,共8页
为便捷、准确地预测磨削后螺杆转子的表面粗糙度,提出了一种基于自注意力卷积神经网络(SA-CNN)的磨削曲面粗糙度测量方法。通过正交试验获得螺杆转子的表面粗糙度以及粗糙度数值对应位置的表面图像,图像经自适应直方图均衡化、反锐化掩... 为便捷、准确地预测磨削后螺杆转子的表面粗糙度,提出了一种基于自注意力卷积神经网络(SA-CNN)的磨削曲面粗糙度测量方法。通过正交试验获得螺杆转子的表面粗糙度以及粗糙度数值对应位置的表面图像,图像经自适应直方图均衡化、反锐化掩蔽等预处理后作为训练样本输入SA-CNN模型中。采用SA-CNN模型对磨削后的螺杆转子表面粗糙度值进行预测,并与经典网络ResNet、AlexNet、VGG-16、基础CNN以及图神经网络GNN预测结果进行对比。试验结果表明,SA-CNN模型的平均预测精度达到95.24%,均方根误差(RMSE)为0.0706μm,平均绝对百分比误差(MAPE)为7.4206%,均优于对比网络,且模型收敛较快,表现出较高的精度和良好的鲁棒性。 展开更多
关键词 磨削 表面粗糙度 卷积神经网络 正交试验
在线阅读 下载PDF
基于卷积神经网络的立体匹配算法研究 被引量:1
6
作者 郭北涛 刘瀚齐 +1 位作者 刘琪 张丽秀 《组合机床与自动化加工技术》 北大核心 2025年第1期69-73,78,共6页
在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征... 在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征提取网络,提高弱纹理区域的匹配精度;其次,改进了代价体相似度计算步骤,在保证匹配精度的同时,降低模型的参数量;最后,通过采取视差梯度信息和视差回归损失函数相结合的策略,有效地解决了在视差不连续区域中存在的边界信息保留不完整的问题。使用Middlebury数据集对模型进行验证,实验结果表明,相较于现有的立体匹配算法,在精度和速度方面都有所提升。 展开更多
关键词 机器视觉 立体匹配 卷积神经网络 深度学习
在线阅读 下载PDF
基于一维卷积神经网络的钢轨波磨迁移诊断方法 被引量:1
7
作者 王阳 肖宏 +3 位作者 张智海 迟义浩 魏绍磊 方树薇 《铁道学报》 北大核心 2025年第4期115-123,共9页
监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激... 监测钢轨表面波磨状态是控制铁路环境振动与噪声的必要措施,利用安装在运营列车车体上的加速度传感器实现对钢轨波磨的实时监测,具有低成本、高效和便携的优点。为实现利用车体动态响应识别钢轨波磨,通过小波变换等手段分析钢轨波磨激励下车体振动特性,建立车辆-轨道刚柔耦合模型,获取车体垂向加速度仿真数据集。基于一维卷积神经网络搭建钢轨波磨检测模型并在仿真数据集上进行训练,与其他几种常见的检测模型进行对比,最后将模型迁移到实测车体垂向加速度数据集上实现对钢轨波磨的诊断。研究结果表明,钢轨波磨激励的振动能量在运行方向左侧和右侧空气弹簧对应的地板表面位置基本相同,通过车体垂向振动加速度信号无法区分左右两股钢轨的差异。与SVM、LSTM及2D-CNN相比,本文提出的钢轨波磨检测模型精度最高,单个样本推理时间仅为1.00 ms,钢轨波磨识别准确度达92.38%。 展开更多
关键词 钢轨波磨 车载检测 数据驱动 迁移学习 一维卷积神经网络(1D-CNN)
在线阅读 下载PDF
基于物联网和卷积神经网络的智能农机安全驾驶系统 被引量:2
8
作者 张砚雪 《农机化研究》 北大核心 2025年第3期211-216,共6页
基于物联网和卷积神经网络的智能农机安全驾驶系统是一种创新的农业技术应用,通过将农机设备的摄像装置连接到互联网上,实现对农机设备和驾驶员的实时监测和数据采集;再利用卷积神经网络技术对采集到的驾驶数据进行特征提取和驾驶行为... 基于物联网和卷积神经网络的智能农机安全驾驶系统是一种创新的农业技术应用,通过将农机设备的摄像装置连接到互联网上,实现对农机设备和驾驶员的实时监测和数据采集;再利用卷积神经网络技术对采集到的驾驶数据进行特征提取和驾驶行为分类与识别,实现对驾驶行为的自动监测和预警。实验结果表明:系统对驾驶行为的类别检测准确率较高,可以提高农机驾驶安全性和驾驶效率,为农业生产提供更加智能化和高效的服务。 展开更多
关键词 物联网 卷积神经网络 智能农机 安全驾驶 驾驶行为 预警
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断 被引量:1
9
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
10
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
融合改进卷积神经网络和层次SVM的鸡蛋外观检测 被引量:1
11
作者 姚万鹏 张凌晓 +1 位作者 赵肖峰 王飞成 《食品与机械》 北大核心 2025年第1期158-164,共7页
[目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2... [目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2)设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。(3)建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。[结果]所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。[结论]所提方法能够有效实现对鸡蛋的在线实时精细化分类。 展开更多
关键词 鸡蛋外观 卷积神经网络 浣熊优化算法 支持向量机 特征提取
在线阅读 下载PDF
基于卷积神经网络的线结构光高精度三维测量方法 被引量:1
12
作者 叶涛 何威燃 +2 位作者 刘国鹏 欧阳煜 王斌 《仪器仪表学报》 北大核心 2025年第2期183-195,共13页
线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精... 线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精度下降,进而影响整体三维测量的精度和鲁棒性。针对上述问题,提出了一种基于卷积神经网络的鲁棒三维测量方法。首先,设计了一种创新性的残差U型块特征金字塔网络(RSU-FPN),旨在实现背景噪声的干扰抑制和结构光条纹区域中心的高精度鲁棒提取。其次,构建了一种新型的线结构光视觉传感器,并提出了一种分离式测量模型,成功将摄像机标定与光平面标定解耦,极大地提高了系统的灵活性与扩展性。通过这种解耦的标定方式,避免了传统标定方法中存在的耦合问题,使得整个测量系统更加高效且易于调整。实验结果表明,所提出的基于卷积神经网络的鲁棒三维测量方法,在复杂背景下能够实现结构光条纹中心的高精度提取,利用提取出的光条纹中心进行标定,其均方根误差分别为x方向0.005 mm、y方向0.009 mm以及z方向0.097 mm。并且,该方法在不同表面类型(如漫反射表面和光滑反射表面)上均能实现高精度的三维重建,验证了其在实际应用中的优越性和强大的鲁棒性。 展开更多
关键词 线结构光 三维测量 卷积神经网络 残差U型块特征金字塔网络 背景噪声抑制
在线阅读 下载PDF
基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络 被引量:1
13
作者 陶永鹏 柏诗淇 周正文 《计算机应用》 北大核心 2025年第7期2378-2386,共9页
脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人... 脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人力资源。为了简化网络设计流程并自动获取最优的网络结构,提出一种基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络(NASCT-Net),以在构建用于多模态MRI脑肿瘤分割的网络架构的过程中,提高分割的精确度。首先,将神经架构搜索(NAS)技术应用于编码器的构建,形成可堆叠的NAS编解码模块,以自动优化适用于脑胶质瘤精准分割的网络架构;其次,在编码器底层集成基于Transformer的特征编码模块,以增强对肿瘤各组之间的相对位置和全局信息的表征能力;最后,通过构建体积加权Dice损失函数(VWDiceLoss),解决前景与背景的不平衡问题。在BraTS2019脑肿瘤数据集上与Swin-Unet等方法进行比较的实验结果表明,NASCT-Net的平均Dice相似系数(DSC)提高了0.009,同时平均Hausdorff距离(HD)降低了1.831 mm,验证了NASCT-Net在提高脑肿瘤多组织分割精度方面的有效性。 展开更多
关键词 网络架构 神经网络架构搜索 脑肿瘤分割 卷积神经网络 TRANSFORMER
在线阅读 下载PDF
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:3
14
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
卷积循环神经网络的高光谱图像解混方法 被引量:2
15
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
用于铁路场景语义分割的改进动态图卷积神经网络 被引量:1
16
作者 王卫东 刘延 +3 位作者 邱实 刘贤华 魏晓 王劲 《计算机辅助设计与图形学学报》 北大核心 2025年第1期139-147,共9页
针对目前在铁路场景语义分割中存在的数据获取成本高、分割精度低、泛化能力差等问题,提出了一种基于改进动态图卷积神经网络的铁路场景语义分割方法.首先利用高分辨率的无人机采集铁路场景的多视角图像,并通过结构运动恢复与基于面片... 针对目前在铁路场景语义分割中存在的数据获取成本高、分割精度低、泛化能力差等问题,提出了一种基于改进动态图卷积神经网络的铁路场景语义分割方法.首先利用高分辨率的无人机采集铁路场景的多视角图像,并通过结构运动恢复与基于面片的多视角立体视觉算法生成铁路场景的三维点云;然后在动态图卷积神经网络中引入空间注意力模块,增强网络结构的分割精度与泛化性;最后通过改进后的图卷积神经网络对预处理后的铁路场景点云完成高精度的语义分割.实验阶段采用的铁路场景包括桥梁段、路基段与联络线,共计11个区域.以平均交并比为评价指标,与动态图卷积神经网络、PointNet++进行对比,研究结果表明,基于图像点云训练的改进动态图卷积神经网络对于铁路场景语义分割具有更高的精度,与动态图卷积神经网络、PointNet++相比,分割精度分别提高3.3个百分点与6.0个百分点,且具有更好的泛化能力. 展开更多
关键词 铁道工程 点云语义分割 无人机点云 卷积神经网络
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别 被引量:1
17
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
18
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数域卷积神经网络 有监督学习
在线阅读 下载PDF
机器学习改进卷积神经网络在作物病害识别中的研究进展
19
作者 汪强 李美琳 +6 位作者 马新明 乔红波 郭伟 时雷 熊淑萍 樊泽华 郑光 《河南农业大学学报》 北大核心 2025年第5期767-775,共9页
综述了从机器学习到卷积神经网络(convolutional neural network,CNN)的作物病害识别融合改进方法,系统梳理了机器学习与CNN作物病害识别的关键技术,包括数据获取、数据处理、数据训练、网络架构选择、特征提取与融合、模型验证等6个应... 综述了从机器学习到卷积神经网络(convolutional neural network,CNN)的作物病害识别融合改进方法,系统梳理了机器学习与CNN作物病害识别的关键技术,包括数据获取、数据处理、数据训练、网络架构选择、特征提取与融合、模型验证等6个应用流程,分析了两者性能差异的核心原因,归纳了二者共同面临的数据需求高、计算资源高和泛化能力不足的技术难点,对应总结了机器学习改进卷积神经网络作物病害识别关键技术的策略。最后,总结了当前研究存在的挑战,并展望了未来的研究方向。 展开更多
关键词 卷积神经网络 机器学习 深度学习 作物病害 病害识别
在线阅读 下载PDF
基于卷积神经网络视觉识别的智能输液系统的研发与初步应用
20
作者 徐海利 潘红英 +4 位作者 黄晨 徐虹霞 陈玉萍 张文娟 乔凯 《中国护理管理》 北大核心 2025年第4期625-629,共5页
目的:探讨基于卷积神经网络视觉识别的智能输液系统在临床应用中的有效性和安全性,以期为智能输液系统在普通病房的应用提供参考借鉴。方法:便利选取2022年10月及2023年3月于浙江省某三级甲等医院普通外科病房的280例患者及16名护士为... 目的:探讨基于卷积神经网络视觉识别的智能输液系统在临床应用中的有效性和安全性,以期为智能输液系统在普通病房的应用提供参考借鉴。方法:便利选取2022年10月及2023年3月于浙江省某三级甲等医院普通外科病房的280例患者及16名护士为研究对象,其中患者包括智能输液系统建立前的140例和建立后的140例。比较智能输液系统建立前后护士的工作负担、患者的满意度以及病区的噪声水平。结果:智能输液系统建立后护士往返护士站的次数少于之前(P<0.05);患者对智能输液系统的满意度高于之前(P<0.05);护士应铃时长短于之前(P<0.05);噪声水平低于之前(P<0.05)。结论:基于卷积网络视觉识别的智能输液系统可以减轻护士的工作负担,提升患者满意度,对改善输液护理质量及病区环境具有重要价值。 展开更多
关键词 卷积神经网络 视觉识别 智能输液系统 护理质量
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部