期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
自适应卷积注意力与掩码结构协同的显著目标检测
1
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
融合注意力机制和卷积神经网络的电网暂态电压稳定评估及可解释性分析 被引量:2
2
作者 张哲 秦博宇 +2 位作者 高鑫 丁涛 张逸兴 《电网技术》 EI CSCD 北大核心 2024年第11期4648-4657,I0057,I0056,共12页
提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention mo... 提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention module,CB AM)提升传统CNN的特征捕获能力,考虑模型特性和网络结构设计CBAMCNN组合模块。其次,建立基于CBAM-CNN的电网暂态电压稳定评估模型,揭示运行工况多变场景下系统关键电气量和稳定状态之间的映射关系。最后,基于沙普利值加性解释(Shapley additive explanations,SHAP)理论提出数据驱动模型评估结果的可解释性分析框架,提炼影响样本稳定状态的主导特征,评估各输入特征量对模型输出结果的贡献程度。在典型受端电网仿真系统中验证了所提稳定评估方法的准确性和可解释性分析方法的有效性。 展开更多
关键词 卷积注意力模块-卷积神经网络 暂态电压稳定评估 沙普利值加性解释理论 可解释性分析
在线阅读 下载PDF
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:2
3
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
基于注意力卷积神经网络的焦家金矿带三维成矿预测及构造控矿因素定量分析 被引量:10
4
作者 邓浩 魏运凤 +3 位作者 陈进 刘占坤 喻姝研 毛先成 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第9期3003-3014,共12页
焦家金矿带是我国重要的金矿产地,随着开采深度不断增加,深部找矿已成为目前工作重点,为此,从数据科学视角出发,利用深度学习技术,开展焦家矿带三维成矿预测及控矿因素定量分析工作。在建立三维地质模型和控矿指标基础上,构建引入CBAM... 焦家金矿带是我国重要的金矿产地,随着开采深度不断增加,深部找矿已成为目前工作重点,为此,从数据科学视角出发,利用深度学习技术,开展焦家矿带三维成矿预测及控矿因素定量分析工作。在建立三维地质模型和控矿指标基础上,构建引入CBAM注意力机制模块的卷积神经网络模型,从初始控矿指标中抽取具有矿化指示性的信息特征,建立焦家断裂面与矿化定位间的非线性关联关系,并与其他方法构建的成矿预测模型进行对比,验证本文方法构建的模型的准确性与可靠性。利用DeepLIFT方法解构深度网络特征,明确各控矿指标输入对网络输出的贡献,以此定量分析焦家矿带控矿因素对金成矿的影响。研究结果表明:焦家断裂距离场对成矿影响最显著,其次为坡度和坡度变化率,形态起伏度对成矿影响较弱;在矿带深部2000~3000 m圈定找矿有利靶区3处,其中,纱岭勘查区矿体深部延伸部位和曲家勘查区北段深部具有较大找矿潜力,焦家与曲家勘查区连接部位深部可能存在新的矿化富集区。 展开更多
关键词 三维成矿预测 焦家金矿带 注意力卷积神经网络 构造控矿因素分析
在线阅读 下载PDF
基于卷积注意力长短时记忆网络的轴承寿命预测方法 被引量:5
5
作者 周建民 高森 +2 位作者 李家辉 熊文豪 王云庆 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第6期1140-1148,共9页
传统的滚动轴承寿命预测方法缺乏明确的学习机制,无法有效识别不同时序特征之间的差异并突出重要特征,影响其预测精度.为克服上述缺点,本文提出了一种基于卷积注意力长短时记忆网络(CAN-LSTM)的剩余使用寿命预测模型.该模型主要由两部... 传统的滚动轴承寿命预测方法缺乏明确的学习机制,无法有效识别不同时序特征之间的差异并突出重要特征,影响其预测精度.为克服上述缺点,本文提出了一种基于卷积注意力长短时记忆网络(CAN-LSTM)的剩余使用寿命预测模型.该模型主要由两部分组成:前端为卷积注意力网络(CAN),学习通道和时间维度中的深层故障特征,提高特征的表征能力;后端为改进LSTM网络,基于退化特征对轴承进行寿命预测.归一化健康指标至[0,1]区间内,得到相同的失效阈值;使用五点平滑法对预测结果进行处理,实现预测结果的输出;利用留一法对轴承全寿命试验数据进行验证,测试模型的准确性和适应性.试验结果表明:所提模型的平均均方根误差和平均绝对值误差比仅用CNN模型预测值低54.12%和59.05%,比仅用LSTM模型预测值低39.06%和43.42%,比卷积长短时记忆网络(CNN-LSTM)低20.41%和25.86%. 展开更多
关键词 卷积注意力网络 长短时记忆网络 轴承 剩余使用寿命预测
在线阅读 下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:17
6
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
在线阅读 下载PDF
基于注意力卷积长短时记忆模型的城市出租车流量预测
7
作者 周新民 金江涛 +2 位作者 鲍娜娜 袁涛 崔烨 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期153-162,共10页
为解决城市交通拥堵和安全问题,提出一种注意力卷积长短时记忆(ConvLSTM)残差(ACLR)模型,该模型通过结合ConvLSTM、注意力机制和残差结构,分别处理出租车流量的时间、空间、和其他特征,挖掘区域兴趣点(POI)数据对出租车流量的影响,有效... 为解决城市交通拥堵和安全问题,提出一种注意力卷积长短时记忆(ConvLSTM)残差(ACLR)模型,该模型通过结合ConvLSTM、注意力机制和残差结构,分别处理出租车流量的时间、空间、和其他特征,挖掘区域兴趣点(POI)数据对出租车流量的影响,有效提升交通时空特征的提取能力。同时,引入专门的学习元件考虑外部因素和POI密度对交通流量的影响,并利用北京市出租车轨迹数据验证。结果表明:ACLR模型在城市交通流预测中的精度高于差分自回归滑动平均(ARIMA)模型、长短时记忆(LSTM)网络、深度时空残差网络(ST-ResNet)、卷积神经网络(CNN)-残差神经单元-LSTM(CRL)循环神经网络、ACFM等模型,在无POI密度和考虑POI密度的情况下,均有助于提升模型的预测性能,ACLA模型的预测值与真实值基本一致,高峰时段也能与真实值较好地吻合,有效提升交通时空特征的提取能力,降低预测误差,使得交通流量预测性能得到优化。 展开更多
关键词 注意力卷积长短时记忆残差网络(ACLR)模型 交通流量预测 城市出租车 时空特征 残差结构
在线阅读 下载PDF
基于多尺度注意力卷积网络的作物害虫检测 被引量:8
8
作者 张善文 邵彧 +1 位作者 齐国红 许新华 《江苏农业学报》 CSCD 北大核心 2021年第3期579-588,共10页
田间作物害虫检测是精确防治虫害和减少农药使用量的前提。由于田间害虫种类多,同种害虫个体间差异大,田间同一只害虫的大小、颜色、姿态、位置和背景变化多样、无规律,而且田间背景复杂、对比度低,使得传统的作物害虫检测方法的性能不... 田间作物害虫检测是精确防治虫害和减少农药使用量的前提。由于田间害虫种类多,同种害虫个体间差异大,田间同一只害虫的大小、颜色、姿态、位置和背景变化多样、无规律,而且田间背景复杂、对比度低,使得传统的作物害虫检测方法的性能不高。现有的基于深度学习的作物害虫检测方法需要大量高质量的标注训练样本,而且训练时间长。在VGG16模型的基础上,本研究提出一种基于多尺度注意力卷积网络(Multi-scale convolutional network with attention,MSCNA)的作物害虫检测方法。在MSCNA中,多尺度结构和注意力模型用于提取多尺度害虫检测特征,增强对形态较小害虫的检测能力;在训练过程中引入二阶项残差模块,减少网络损失和加速网络训练。试验结果表明,该方法能较好地检测到农田中各种各样、大小不同的害虫,检测平均准确率为92.44%。说明该方法能够实现自然场景下作物害虫的精准检测,可应用于田间作物害虫自动检测。 展开更多
关键词 作物害虫检测 注意力机制 卷积神经网络 多尺度注意力卷积网络
在线阅读 下载PDF
基于多尺度注意力卷积神经网络的苹果叶部病害识别方法 被引量:6
9
作者 张会敏 谢泽奇 《江苏农业科学》 北大核心 2023年第16期154-161,共8页
针对传统苹果叶部病害识别方法识别率低和现有卷积神经网络(CNN)训练时间长的问题,提出一种基于多尺度注意力卷积神经网络的苹果叶部病害识别方法。该方法由多尺度空洞卷积模块Inception与改进的残差模块组成,其中,多尺度空洞卷积模块In... 针对传统苹果叶部病害识别方法识别率低和现有卷积神经网络(CNN)训练时间长的问题,提出一种基于多尺度注意力卷积神经网络的苹果叶部病害识别方法。该方法由多尺度空洞卷积模块Inception与改进的残差模块组成,其中,多尺度空洞卷积模块Inception用于图像的多尺度特征提取,在卷积模块中引入双注意力机制增强网络模型,显著表示图像中叶部病斑区域特征,降低非病斑区域与背景区域对识别结果的干扰,在原始残差模块上引入卷积层与非线性激活函数改进的残差模块,增加鲁棒性判别特征的跨层融合,在苹果病害叶片图像数据集上的识别准确率达96%以上。结果表明,所提出的方法具有参数量少、占用内存小以及性能好的优势,可进一步应用于田间苹果叶部病害智能识别系统。 展开更多
关键词 苹果病害识别 卷积神经网络 多尺度空洞卷积模块 注意力机制 多尺度注意力卷积网络
在线阅读 下载PDF
基于图注意力网络的多标签专利分类方法 被引量:1
10
作者 谭晏松 宋铁成 《计算机应用与软件》 北大核心 2023年第11期194-200,共7页
针对当前大多数基于特征工程和机器学习的专利分类方法存在准确性低以及泛化能力差的问题,提出一种基于注意力感知深度学习模型的多标签专利分类方法。该文将输入数据表示为文本图的形式,并利用图注意力卷积网络学习构建的文本图,并通... 针对当前大多数基于特征工程和机器学习的专利分类方法存在准确性低以及泛化能力差的问题,提出一种基于注意力感知深度学习模型的多标签专利分类方法。该文将输入数据表示为文本图的形式,并利用图注意力卷积网络学习构建的文本图,并通过引入BiLSTM层作为新的聚合函数来表征文本图各节点的差异性和代表的语义信息设计了一个非局部二阶注意层用于捕捉专利文档中的远程和细粒度的语义信息,消除因国际专利分类标签跨域引起的语义模糊;使用Softmax分类器来完成多标签专利的分类任务。所提方法在多标签专利分类任务具有良好的分类精度,相对于其他分类方法,性能有所提高。 展开更多
关键词 多标签专利分类 深度学习 注意力卷积网络 非局部二阶注意力
在线阅读 下载PDF
基于注意力机制的滚动轴承剩余使用寿命预测方法 被引量:7
11
作者 卢瑾 张永平 《机电工程》 CAS 北大核心 2023年第4期516-521,551,共7页
现有的轴承振动信号特征的提取方法过分依赖于专家的经验,同时在轴承的寿命预测过程中,存在因序列过长而导致的记忆力退化等问题,为此,结合卷积神经网络-注意力机制网络(CNN-attention)和基于注意力机制的Encoder-Decoder方法,提出了一... 现有的轴承振动信号特征的提取方法过分依赖于专家的经验,同时在轴承的寿命预测过程中,存在因序列过长而导致的记忆力退化等问题,为此,结合卷积神经网络-注意力机制网络(CNN-attention)和基于注意力机制的Encoder-Decoder方法,提出了一种滚动轴承剩余使用寿命(RUL)的预测模型(方法)。首先,利用快速傅里叶变换(FFT)方法,将滚动轴承的初始振动信号转换成频域幅值信号;然后,设计了一种基于注意力机制的模型:其中,利用CNN-attention进行了退化特征提取,利用基于注意力机制的Encoder-Decoder网络进行了RUL预测,并进一步在远距离信号传输中解决了循环神经网络记忆衰退的问题;最后,为了验证特征提取模型以及寿命预测模型的有效性,采用PHM 2012轴承退化数据集,通过轴承加速退化PRONOSTIA实验平台进行了实验,并将其所得结果与未采用注意力机制模型的预测结果以及其他文献方法所得结果进行了对比。实验结果表明:与其他方法相比,基于注意力机制模型的方法平均绝对误差分别降低了29.41%、32.00%、29.56%、32.34%,平均得分分别提高了0.39%、0.98%、0.82%、15.46%。研究结果表明:在轴承RUL预测方面,基于注意力机制的轴承剩余使用寿命预测模型(方法)是有效的。 展开更多
关键词 剩余使用寿命 卷积神经网络-注意力机制网络 编码器-解码器模型 退化特征提取 滚动轴承寿命预测模型 记忆力退化
在线阅读 下载PDF
基于LSTM-DA神经网络的农产品价格指数短期预测模型 被引量:16
12
作者 贾宁 郑纯军 《计算机科学》 CSCD 北大核心 2019年第S11期62-65,71,共5页
农产品价格一直是维持社会经济生活安定的重点关注领域,由于农产品预测价格与影响因素之间存在非线性关系,递归神经网络虽然适用于时间序列的预测,但是针对长时间的跨度,其预测效果有限。基于此,根据农产品价格特点,设计了一种LSTM-DA(L... 农产品价格一直是维持社会经济生活安定的重点关注领域,由于农产品预测价格与影响因素之间存在非线性关系,递归神经网络虽然适用于时间序列的预测,但是针对长时间的跨度,其预测效果有限。基于此,根据农产品价格特点,设计了一种LSTM-DA(Long Short-Term Memory-Double Attention,双重注意力机制与长短期记忆网络融合)神经网络模型。它将卷积注意力网络(Convolutional Neural Networks,CNN)、长短期记忆网络(Long Short-Term Memory,LSTM)和注意力机制相结合,针对不同成分的影响因子通过卷积注意力网络进行特征提取,调节其对应的权重并馈送至长短期记忆网络模型中以呈现时间序列的影响,在此基础上,将结果再次送入注意力机制进行权重调节,最终将得到的结果用于农产品价格指数的短期预测。实验前,采用多线程机制从多个农业信息平台中爬取海量的价格、天气等相关数据,在对其进行解析和清洗的基础上,将其存入分布式文件系统(Hadoop Distributed File System,HDFS)中;实验时,采用长短期记忆网络作为基线。实验结果表明,与传统的单一模型相比,此模型不仅可以提升预测精度,而且预测的农产品价格指数可以准确地描述未来一周内蔬菜类产品的整体趋势。 展开更多
关键词 卷积注意力网络 长短期记忆网络 注意力机制 网络数据爬取 价格预测
在线阅读 下载PDF
一种基于ICA-T特征和CNN-LA-BiLSTM的锂离子电池健康状态估计方法 被引量:1
13
作者 张朝龙 陈阳 +3 位作者 刘梦玲 张俣峰 华国庆 阴盼昐 《储能科学与技术》 北大核心 2025年第3期1258-1269,共12页
为了解决锂离子电池健康状态(SOH)估计精度不足以及退化过程描述不准确的问题,本文提出了一种基于卷积神经网络-局部注意力-双向长短期记忆神经网络(CNN-LA-BiLSTM)的锂离子电池SOH估计方法。首先,测量锂离子电池在充电阶段的充电时间... 为了解决锂离子电池健康状态(SOH)估计精度不足以及退化过程描述不准确的问题,本文提出了一种基于卷积神经网络-局部注意力-双向长短期记忆神经网络(CNN-LA-BiLSTM)的锂离子电池SOH估计方法。首先,测量锂离子电池在充电阶段的充电时间、电流、电压、容量以及温度等数据。然后,对锂离子电池进行增量容量分析,提取增量容量(IC)曲线的面积作为锂离子电池的电特征;计算锂离子电池充电阶段的温度积分,作为温度特征;将曲线面积与温度相结合,用作锂离子电池SOH估计的联合特征增量容量面积-温度(ICA-T)。随后,利用CNN-LA-BiLSTM方法建立SOH估计模型,在模型中,引入局部注意力(LA)优化卷积神经网络(CNN)的权重和偏差,使用Huber损失函数优化模型参数从而获得良好的SOH估计效果。利用本实验室的2组锂离子电池数据开展测试,结果表明,提出的方法能有效地估计电池的SOH,平均绝对百分比误差(MAPE)为0.5794%,均方根误差(RMSE)为0.0099,决定系数(R2)为0.9961。与传统方法相比,本文提出的方法在电池SOH估计中表现出了更优的性能。 展开更多
关键词 锂离子电池 健康状态估计 卷积神经网络-局部注意力-双向长短期记忆神经网络 增量容量 Huber损失函数
在线阅读 下载PDF
基于CNN-LSTM的透射槽波勘探走向断层预测研究
14
作者 周官群 薛凯文 +5 位作者 张维鑫 高永新 金学良 王宗涛 任川 王亚飞 《工矿自动化》 北大核心 2025年第7期149-157,共9页
透射槽波地震勘探是探测工作面地质构造和灾害体的有效手段,但存在探测深度浅、分辨率低、易受地形与环境噪声干扰等问题。针对该问题,将深度学习技术引入透射槽波地震勘探,用于实现工作面走向断层位置预测。建立工作面走向断层地质模型... 透射槽波地震勘探是探测工作面地质构造和灾害体的有效手段,但存在探测深度浅、分辨率低、易受地形与环境噪声干扰等问题。针对该问题,将深度学习技术引入透射槽波地震勘探,用于实现工作面走向断层位置预测。建立工作面走向断层地质模型,采用弹性波有限差分算法进行槽波正演模拟,生成槽波模拟数据集。构建卷积神经网络-长短期记忆(CNN-LSTM)网络模型,通过CNN提取槽波数据的局部特征,由LSTM网络捕捉槽波数据的时序依赖关系,实现槽波时空特征协同解析。采用槽波模拟数据集训练CNN-LSTM模型,预测的均方根误差为4.3934m,平均绝对误差为2.9875m,决定系数为0.9883,验证了该模型具有较高的预测精度和较好的泛化能力。采用内蒙古某矿506工作面透射槽波勘探数据对CNN-LSTM模型进行迁移训练和验证,结果表明该模型预测的断层位置和走向与回采揭露的实际位置一致,预测效果优于槽波能量衰减成像、无线电坑透探测技术。 展开更多
关键词 工作面地质勘探 断层预测 断层定位 透射槽波 卷积注意力长短期记忆网络 CNN-LSTM
在线阅读 下载PDF
一种用于答案选择的知识增强混合神经网络 被引量:2
15
作者 李超凡 陈羽中 《小型微型计算机系统》 CSCD 北大核心 2021年第10期2065-2073,共9页
答案选择是问答领域中一项重要的子任务,该任务旨在从候选答案集中选择出正确的答案.传统的模型主要依靠人工提取问答之间的语义相似度特征,并通过分类器或排名算法选择最匹配的答案.近年来的研究工作主要基于深度神经网络自动提取问答... 答案选择是问答领域中一项重要的子任务,该任务旨在从候选答案集中选择出正确的答案.传统的模型主要依靠人工提取问答之间的语义相似度特征,并通过分类器或排名算法选择最匹配的答案.近年来的研究工作主要基于深度神经网络自动提取问答的语义相似度特征,并在问答匹配精度上取得了巨大的进步.但是,大多数深度神经网络模型依赖单一的神经网络来获取问答的语义表征,且未充分考虑问答在语义表征上的相互影响,无法充分挖掘问答之间的语义相似信息.针对上述问题,本文提出了一个知识增强的混合神经网络模型KE-HNN(Knowledge-enhanced Hybrid Neural Network).KE-HNN模型采用卷积神经网络CNN(Convolutional Neural Network)和双向长短期记忆网络Bi-LSTM(Bi-directional Long Short-Term Memory Network)构成的混合神经网络获取问答的上下文语义信息;利用多头注意力机制使模型关注于问题和候选答案语句中的关键部分;融合外部知识库并引入文本指导注意力卷积神经网络精确提取与问答相关的知识表征信息,从而增强问答的细粒度语义特征表示.Trec-QA数据集上的实验结果表明,与基准模型相比,本文所提出的KE-HNN模型获得了领先的性能. 展开更多
关键词 答案选择 神经网络 多头注意力机制 知识库 文本上下文指导注意力卷积神经网络
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法 被引量:1
16
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
融合特征编码和短语交互感知的隐式篇章关系识别 被引量:1
17
作者 王秀利 金方焱 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1377-1388,共12页
隐式篇章关系识别难度大、普遍性高.从论元编码和论元交互角度入手,提出了一种融合特征编码和短语交互感知的隐式篇章关系识别模型.该模型兼顾了论元本身特征和论元间交互特征的作用,并分别进行了优化.论元编码部分整合了双向长短时记... 隐式篇章关系识别难度大、普遍性高.从论元编码和论元交互角度入手,提出了一种融合特征编码和短语交互感知的隐式篇章关系识别模型.该模型兼顾了论元本身特征和论元间交互特征的作用,并分别进行了优化.论元编码部分整合了双向长短时记忆网络和循环注意力卷积神经网络,能够更全面地捕获论元全局和局部特征;论元交互部分从短语层级考虑论元间的语义关系建模,构建了短语级交互注意力机制,并利用神经张量网络深入挖掘其中的关系模式,更能体现出论元间潜在的更深层次的关联关系.在宾州篇章树库数据集上的实验结果表明,该模型F1值均优于其他模型. 展开更多
关键词 隐式篇章关系识别 双向长短时记忆网络 循环注意力卷积神经网络 短语级交互注意力 神经张量网络
在线阅读 下载PDF
基于信息调控和MATCN的超短期风电功率多步预测 被引量:1
18
作者 陈磊 黄凯阳 +3 位作者 张怡 陈禹 张志瑞 尹振楠 《现代电子技术》 北大核心 2024年第18期1-7,共7页
对波动的风电功率进行有效预测,是电网供需平衡、系统稳定运行的重要保障。为此,提出一种基于信息调控和MATCN的超短期风电功率多步预测方法。利用现有数据衍生出高阶项与交互项,提升特征序列数量与有效特征占比。针对复杂的风电数据结... 对波动的风电功率进行有效预测,是电网供需平衡、系统稳定运行的重要保障。为此,提出一种基于信息调控和MATCN的超短期风电功率多步预测方法。利用现有数据衍生出高阶项与交互项,提升特征序列数量与有效特征占比。针对复杂的风电数据结构,使用变分模态分解(VMD)将其拆分,根据子序列相关性和方差贡献率的计算结果保留重要序列分量,其余分量进行聚合,降低计算负担,缩短训练时间。随后,引入注意力机制构造多头注意力时间卷积网络(MATCN),通过注意力得分调整网络内部卷积单元之间的传递信息,实现模型对各序列分量的预测。最后,重构序列分量预测值,得到最终的输出结果。在实例数据上对所提模型进行对比验证,结果表明,该模型在不同步幅下均具有较好的预测效果。 展开更多
关键词 风电功率 多步预测 变分模态分解 多头注意力时间卷积网络 注意力机制 信息调控
在线阅读 下载PDF
负载不平衡下小样本数据的轴承故障诊断 被引量:34
19
作者 何强 唐向红 +2 位作者 李传江 陆见光 陈家兑 《中国机械工程》 EI CAS CSCD 北大核心 2021年第10期1164-1171,1180,共9页
针对轴承振动信号易受负载不平衡干扰以及轴承故障样本量少的问题,提出了一种基于梯度惩罚Wasserstein距离生成对抗网络(WGAN-GP)和自注意力卷积神经网络(SeCNN)的轴承故障诊断方法。对轴承振动信号进行短时傅里叶变换,得到易于WGAN-GP... 针对轴承振动信号易受负载不平衡干扰以及轴承故障样本量少的问题,提出了一种基于梯度惩罚Wasserstein距离生成对抗网络(WGAN-GP)和自注意力卷积神经网络(SeCNN)的轴承故障诊断方法。对轴承振动信号进行短时傅里叶变换,得到易于WGAN-GP处理的时频谱样本,分为训练集、验证集、测试集;将训练集输入到WGAN-GP中进行对抗训练,生成与训练样本分布相似的新样本,并添加到训练集中以扩充训练集;将扩充后的训练集输入到SeCNN中进行学习,并将训练好的模型应用于测试集,输出故障识别结果。对CUT-2平台负载不平衡轴承数据集进行分析,实验结果表明,所提方法能够准确有效地对轴承故障进行分类。 展开更多
关键词 轴承故障诊断 负载不平衡 小样本 短时傅里叶变换 梯度惩罚Wasserstein距离生成对抗网络 注意力卷积神经网络
在线阅读 下载PDF
基于深度学习的抗年龄干扰人脸识别 被引量:9
20
作者 何星辰 郭勇 +1 位作者 李奇龙 高唱 《自动化学报》 EI CAS CSCD 北大核心 2022年第3期877-886,共10页
随着年龄的增长,人脸的形状、纹理等特征会随之发生较明显的改变从而造成显著的类内干扰,这使得人脸识别的性能大大降低.为了解决上述问题,本文基于深度卷积神经网络将年龄估计任务和人脸识别任务相结合,提出了一种抗年龄干扰的人脸识... 随着年龄的增长,人脸的形状、纹理等特征会随之发生较明显的改变从而造成显著的类内干扰,这使得人脸识别的性能大大降低.为了解决上述问题,本文基于深度卷积神经网络将年龄估计任务和人脸识别任务相结合,提出了一种抗年龄干扰的人脸识别新方法AD-CNN(Age decomposition convolution neural network),首先将卷积块注意力模型(Convolutional block attention module,CBAM)嵌入到残差网络中以学习更具有代表性的面部特征,随后利用线性回归指导年龄估计任务,提取出年龄干扰因子,通过多层感知机将整个面部特征与年龄干扰特征投影到同一线性可分空间,最后从面部稳定的特征中将年龄干扰分离,得到与年龄无关的面部特征,并采用改进后的角度损失函数基于年龄无关的身份特征进行人脸识别任务,从而达到抑制年龄干扰的目的.本文在MORPH和FGNET数据集上的识别正确率分别达到了98.93%,和90.0%,充分证实了本文所提方法的先进性和有效性. 展开更多
关键词 人脸识别 年龄干扰 深度学习 年龄估计 卷积神经网络注意力模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部