期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
线性局部切空间排列的传播半监督学习方法 被引量:2
1
作者 薛巍 王正群 +2 位作者 徐春林 李峰 周中侠 《计算机应用研究》 CSCD 北大核心 2014年第8期2334-2337,共4页
针对人脸识别应用中的线性局部切空间排列算法(LLTSA)不能有效利用样本标签信息的问题,提出了一种线性局部切空间排列的标签传播半监督算法(SSLLTSA)。该算法利用标签传播的方法从带有部分标签的样本数据中得到软标签,然后利用软标签构... 针对人脸识别应用中的线性局部切空间排列算法(LLTSA)不能有效利用样本标签信息的问题,提出了一种线性局部切空间排列的标签传播半监督算法(SSLLTSA)。该算法利用标签传播的方法从带有部分标签的样本数据中得到软标签,然后利用软标签构造出软标签散度矩阵来描述数据集的类内紧凑性和类间分离性。SSLLTSA很好地保持了数据集的局部结构,有效地利用了样本中的标签信息。利用YALE和ORL人脸库进行实验,SSLLTSA比传统算法LLTSA的识别率平均分别提高了3.50%和3.89%。特别地,在只存有少量标签样本的情况下,该算法仍能保持良好的分类性能。 展开更多
关键词 监督学习 标签传播 软标签 空间 局部结构 人脸识别
在线阅读 下载PDF
一种半监督邻域自适应线性局部切空间排列的故障识别方法研究 被引量:3
2
作者 谢晓华 王庆红 《机械强度》 CAS CSCD 北大核心 2018年第5期1056-1062,共7页
线性局部切空间排列算法(Linear local tangent space alignment,LLTSA)是能够较好应用于模式识别问题的降维方法,但由于其属于无监督的降维方法且在降维过程中只使用全局统一的邻域参数,使得在对高维数据集进行约简时,不能利用部分样... 线性局部切空间排列算法(Linear local tangent space alignment,LLTSA)是能够较好应用于模式识别问题的降维方法,但由于其属于无监督的降维方法且在降维过程中只使用全局统一的邻域参数,使得在对高维数据集进行约简时,不能利用部分样本的类别标签信息且不能根据样本空间分布的变化调整邻域参数。针对上述问题,提出了一种半监督邻域自适应线性局部切空间排列算法(Semi-supervised neighborhood self-adaptive LLTSA,SSNA-LLTSA)。该算法在LLTSA的基础上,利用部分标签信息来调整样本点与点之间的距离以形成新的距离矩阵来完成邻域构建,同时根据每个数据样本点邻域的概率密度自适应地调整邻域参数,进而得到更好的降维效果。经典的三维流形、UCI典型数据集模式识别和轴承故障诊断的实验结果表明,该算法克服了LLTSA算法无监督和使用全局统一邻域参数的不足,可更有效地寻找数据的低维本质流形,提高了识别准确率,具有一定优势。 展开更多
关键词 监督 邻域自适应 线性局部空间排列 模式识别
在线阅读 下载PDF
基于线性局部切空间排列维数化简的故障诊断 被引量:35
3
作者 李锋 汤宝平 陈法法 《振动与冲击》 EI CSCD 北大核心 2012年第13期36-40,61,共6页
为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregres... 为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregression,AR)模型系数构造全面表征不同故障特性的混合域特征集,再利用LLTSA将高维混合域特征集化简为故障区分度更好的低维特征矢量,并输入到最近邻分类器(K-nearest Neighbors Classifier,KNNC)中进行故障模式识别。所提出的诊断模型充分融合混合域特征融合在故障特征的全面提取、LLTSA在信息的有效化简及KNNC在分类决策方面的优势,实现诊断方法的自动化、高识别率及较好的通用性。用深沟球轴承不同部位、不同程度故障诊断实例验证该模型的有效性。 展开更多
关键词 混合域特征融合 线性局部空间排列 维数化简 最近邻分类器 故障诊断
在线阅读 下载PDF
增量式监督局部切空间排列算法及齿轮箱故障诊断实验验证 被引量:6
4
作者 佘博 田福庆 +1 位作者 梁伟阁 汤健 《振动与冲击》 EI CSCD 北大核心 2018年第13期105-110,129,共7页
针对局部切空间排列算法面临的无法利用样本标签信息和不能高效处理增量式维数约简问题,提出一种新的增量式监督局部切空间排列算法(Incremental Supervised Local Tangent Space Alignment,ISLTSA)。为充分利用训练样本标签信息,在LTS... 针对局部切空间排列算法面临的无法利用样本标签信息和不能高效处理增量式维数约简问题,提出一种新的增量式监督局部切空间排列算法(Incremental Supervised Local Tangent Space Alignment,ISLTSA)。为充分利用训练样本标签信息,在LTSA算法的基础上加入散度矩阵,构造新的最小目标函数,使得高维样本的低维嵌入坐标同类聚集、异类分离。对于新增样本可能影响部分训练样本局部邻域,更新全局坐标矩阵,获取训练样本低维坐标和新增样本低维坐标,并作为初值进行特征值迭代实现所有样本全局坐标的更新。结合支持向量机分类算法,将ISLTSA算法应用于齿轮箱的故障状态识别,实验分析验证了该方法的监督学习能力,可提高故障状态识别率,并具备增量学习能力,可降低维数约简方法的复杂度。 展开更多
关键词 增量式学习 监督局部空间排列 故障诊断 支持向量机
在线阅读 下载PDF
判别式正交线性局部切空间排列故障辨识 被引量:4
5
作者 李锋 赵洁 +1 位作者 王家序 丁行武 《计算机集成制造系统》 EI CSCD 北大核心 2014年第1期173-181,共9页
针对现有旋转机械故障诊断模式难以实现自动化、高精度和泛化性的关键问题,提出基于判别式正交线性局部切空间排列特征约简的故障辨识方法。该方法首先构造全面表征不同故障特性的时、频域特征集,再利用DOLLTSA将高维时、频域特征集自... 针对现有旋转机械故障诊断模式难以实现自动化、高精度和泛化性的关键问题,提出基于判别式正交线性局部切空间排列特征约简的故障辨识方法。该方法首先构造全面表征不同故障特性的时、频域特征集,再利用DOLLTSA将高维时、频域特征集自动约简为区分度更好的低维特征矢量,并输入到K-近邻分类器中进行故障模式辨识。时、频域特征融集可较全面准确地反映旋转机械的故障特征;DOLLTSA综合利用局部几何结构和类判别信息进行流形解耦,并采用谱回归法和子空间正交化处理来优化低维嵌入子空间,提高了故障辨识精度。深沟球轴承故障诊断实例和空间轴承寿命状态辨识实例验证了所提方法的有效性。 展开更多
关键词 时、频域特征集 判别式正交线性局部空间排列 特征约简 流形学习 故障辨识
在线阅读 下载PDF
基于划分的有监督局部切空间排列的人脸识别 被引量:1
6
作者 程琨 舒勤 +1 位作者 罗伟 张国龙 《计算机应用研究》 CSCD 北大核心 2011年第6期2369-2371,共3页
为了解决流形学习不能充分利用样本类别信息的问题,提出了一种基于划分的有监督局部切空间排列算法,并将其应用于人脸识别。新算法采用基于动态粒子群算法的有监督的K均-值聚类算法确定样本的聚类中心,将样本划分为有重叠的块,新算法在... 为了解决流形学习不能充分利用样本类别信息的问题,提出了一种基于划分的有监督局部切空间排列算法,并将其应用于人脸识别。新算法采用基于动态粒子群算法的有监督的K均-值聚类算法确定样本的聚类中心,将样本划分为有重叠的块,新算法在利用数据类别信息的同时保持了流形的局部几何结构,提高了流形学习对图像的识别能力,能更好地适用于人脸识别。通过在ORL数据库上与其他流形方法比较,验证了新算法的有效性。 展开更多
关键词 局部空间排列 监督的K-均值聚类算法 动态粒子群算法 流形学习 人脸识别
在线阅读 下载PDF
采用监督局部切空间排列算法的航空发动机磨损故障诊断 被引量:4
7
作者 张赟 林学森 +2 位作者 王琳 陈应付 李朋 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第4期179-185,共7页
为解决传统特征提取技术难以处理具有非线性结构的复杂故障数据、影响故障诊断准确性的问题,将非线性维数约简技术——局部切空间排列引入航空发动机滑油光谱数据特征提取中,提出了一种基于监督局部切空间排列的发动机磨损故障诊断方法... 为解决传统特征提取技术难以处理具有非线性结构的复杂故障数据、影响故障诊断准确性的问题,将非线性维数约简技术——局部切空间排列引入航空发动机滑油光谱数据特征提取中,提出了一种基于监督局部切空间排列的发动机磨损故障诊断方法。该方法对非线性分布故障流形数据的内在几何特征进行捕捉,并将数据向低维故障特征空间进行非线性映射,完成故障特征的提取,最后在故障特征空间里构造分类器,完成磨损故障的识别诊断。采用某型发动机磨损故障滑油光谱数据开展实验,结果表明:与传统主元分析、线性鉴别分析特征提取方法相比,该方法能够更有效地提取出嵌入于故障数据中的非线性特征,提高了故障分类的准确率,并且只需采用简单的线性分类器就能具有很好的故障诊断性能。 展开更多
关键词 局部空间排列 线性特征提取 航空发动机 磨损故障诊断
在线阅读 下载PDF
基于几何距离摄动的局部切空间排列算法 被引量:4
8
作者 杨安平 陈松乔 胡鹏 《计算机工程与应用》 CSCD 北大核心 2011年第29期168-170,204,共4页
局部切空间排列算法(Local Tangent Space Alignment)是一种具有严格数学推理的流形学习算法,能有效地学习出高维数据的低维嵌入坐标,但也存在一些不足,如对近邻点的选取依赖性较强、不适应处理高曲率分布、稀疏分布数据源。针对这些缺... 局部切空间排列算法(Local Tangent Space Alignment)是一种具有严格数学推理的流形学习算法,能有效地学习出高维数据的低维嵌入坐标,但也存在一些不足,如对近邻点的选取依赖性较强、不适应处理高曲率分布、稀疏分布数据源。针对这些缺点,提出了一种基于几何距离摄动的局部切空间排列算法。利用几何摄动条件把样本空间划分为一组线性分块的组合,在每一个线性块上应用LTSA算法完成降维。实验结果表明了该算法的有效性。 展开更多
关键词 降维 局部空间排列 流形 几何摄动 最大线性
在线阅读 下载PDF
基于判别改进局部切空间排列特征融合的人脸识别方法 被引量:7
9
作者 张强 戚春 蔡云泽 《电子与信息学报》 EI CSCD 北大核心 2012年第10期2396-2401,共6页
改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA,DILTSA... 改进型局部切空间排列(ILTSA)是最近提出的一种流形学习方法。基于对ILTSA的线性逼近和判别拓展,该文提出一种新的称为判别改进局部切空间排列(DILTSA)的特征提取方法,并给出了理论证明和算法分析。基于最大邻域间隔准则和ILTSA,DILTSA能够同时保持类内与类间局部判别几何结构。此外,提出一种增强型Gabor-like复数小波变换以缓解照明和表情变化对人脸识别的影响。通过融合Gabor-like复数小波变换和原始图像特征,能够进一步提高人脸识别的准确率。在Yale和PIE人脸数据库上的实验结果证明了所提方法的有效性。 展开更多
关键词 人脸识别 流形学习 线性逼近 判别改进局部空间排列 增强型Gabor—like复数小波变换 特征融合
在线阅读 下载PDF
局部切空间排列多姿态人耳识别 被引量:2
10
作者 董冀媛 曾慧 +1 位作者 穆志纯 付冬梅 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第5期855-863,共9页
针对姿态偏转时人耳图像识别率显著降低的问题,将局部切空间排列算法用于二维人耳特征的提取,提出一种局部切空间排列多姿态人耳识别方法.通过分析人耳图像的特点提出局部最大线性片构建策略,并以远少于样本点个数的局部切空间拟合样本... 针对姿态偏转时人耳图像识别率显著降低的问题,将局部切空间排列算法用于二维人耳特征的提取,提出一种局部切空间排列多姿态人耳识别方法.通过分析人耳图像的特点提出局部最大线性片构建策略,并以远少于样本点个数的局部切空间拟合样本集,再全局排列得到人耳低维流形.实验结果表明,该方法明显提高了姿态偏转下的识别率,并且计算效率得到改善,是一种有效的多姿态图像识别方法. 展开更多
关键词 人耳识别 多姿态识别 局部空间排列 局部最大线性片构建策略 流形学习
在线阅读 下载PDF
局部切空间排列算法及其在人脸识别中的应用
11
作者 冯海亮 王丽 李见为 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2009年第3期595-599,共5页
目的探索基于流形学习的人脸识别方法,将流形学习中的局部切空间排列算法(LT-SA)应用于人脸识别.方法利用样本点领域的切空间表示局部的几何性质,将局部切空间排列起来构造流形的全局坐标;用高斯核近似映射关系;在降维空间中用线性判别... 目的探索基于流形学习的人脸识别方法,将流形学习中的局部切空间排列算法(LT-SA)应用于人脸识别.方法利用样本点领域的切空间表示局部的几何性质,将局部切空间排列起来构造流形的全局坐标;用高斯核近似映射关系;在降维空间中用线性判别分析技术(LDA)提取特征;使用最近邻分类器进行分类识别;在Yale和CMU PIE人脸数据库上进行仿真实验.结果实验表明在Yale数据库上LTSA+LDA算法比已有LLE+LDA方法、LLTSA方法平均识别率分别高7.22%、19.11%;在CMU PIE数据库上分别高3.71%、29.56%.结论笔者提出的LTSA+LDA算法能较为有效地将局部切空间排列算法应用于人脸识别,显著提高了识别率. 展开更多
关键词 流形学习 局部空间排列 线性鉴别分析 LTSA+LDA算法
在线阅读 下载PDF
融合Gabor与局部切空间排列法的人脸识别算法 被引量:2
12
作者 程琨 舒勤 罗伟 《计算机工程与应用》 CSCD 2012年第10期208-211,共4页
针对Gabor小波提取人脸特征存在维数高,计算复杂的问题,引入基于划分的局部切空间排列算法(Partitional Local Tangent Space Alignment)对得到的Gabor幅度特征(Gabor Magnitude Feature,GMF)进行降维,同时将主成分分析(PCA)和线性判别... 针对Gabor小波提取人脸特征存在维数高,计算复杂的问题,引入基于划分的局部切空间排列算法(Partitional Local Tangent Space Alignment)对得到的Gabor幅度特征(Gabor Magnitude Feature,GMF)进行降维,同时将主成分分析(PCA)和线性判别分析(LDA)引入到算法中,确定用最近邻分类器进行分类识别的最优投影子空间。通过在ORL人脸数据库上的实验证明了该算法的有效性,用Gabor小波提取特征对光照和表情变化等有良好的鲁棒性。 展开更多
关键词 GABOR小波 局部空间排列 主成分分析 线性判别分析
在线阅读 下载PDF
基于半监督LLTSA维数约简的故障诊断 被引量:2
13
作者 李磊 庞海 张前图 《机械强度》 CAS CSCD 北大核心 2017年第2期279-284,共6页
线性局部切空间排列(LLTSA)为无监督的维数约简方法,在对高维故障特征集进行维数约简时,不能利用部分样本的类别标签信息,使得获得的低维特征仍出现混叠的情况。针对这个问题,提出了半监督线性局部切空间排列(SS-LLTSA)的维数约简方法,... 线性局部切空间排列(LLTSA)为无监督的维数约简方法,在对高维故障特征集进行维数约简时,不能利用部分样本的类别标签信息,使得获得的低维特征仍出现混叠的情况。针对这个问题,提出了半监督线性局部切空间排列(SS-LLTSA)的维数约简方法,即利用部分标签信息来调整样本点与点之间的距离以形成新的距离矩阵,通过新的距离矩阵进行邻域构建,实现了数据本质流行结构和类别标签信息的结合,能够提取区分度更好的低维特征。此外,还通过支持向量机(SVM)来建立低维特征与故障类别的对应关系,实现故障诊断。SS-LLTSA维数约简增强了故障特征的辨识能力,而SVM优异的模式识别能力能够进一步提高故障诊断精度。滚动轴承的故障诊断实例验证了所提故障诊断方法的有效性。 展开更多
关键词 故障诊断 维数约简 半监督线性局部切空间排列 支持向量机
在线阅读 下载PDF
有监督LLTSA特征约简旋转机械故障诊断 被引量:11
14
作者 苏祖强 汤宝平 +1 位作者 邓蕾 尹爱军 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第8期1766-1771,共6页
线性局部切空间排列(LLTSA)为无监督特征约简方法,对多域故障特征集进行维数约简,会导致故障解耦不完全、故障间仍然存在混叠。针对这个问题,提出有监督线性局部切空间排列(S-LLTSA)特征约简方法,将类判别信息融入特征约简过程,实现了... 线性局部切空间排列(LLTSA)为无监督特征约简方法,对多域故障特征集进行维数约简,会导致故障解耦不完全、故障间仍然存在混叠。针对这个问题,提出有监督线性局部切空间排列(S-LLTSA)特征约简方法,将类判别信息融入特征约简过程,实现了数据集本征结构与类判别信息的有机结合,可提取出最优低维敏感故障特征向量;并通过自适应近邻分类器(ANNC)来构建故障特征向量与故障类别的对应关系。S-LLTSA特征约简有效地增加了故障特征的可辨识性,而ANNC具有优异的模式辨识能力,进一步提高了故障诊断的精度。齿轮箱故障模拟实验验证了提出的旋转机械故障诊断方法的有效性。 展开更多
关键词 旋转机械 故障诊断 维数约简 监督线性局部空间排列 自适应邻域分类器
在线阅读 下载PDF
流形学习中非线性维数约简方法概述 被引量:24
15
作者 黄启宏 刘钊 《计算机应用研究》 CSCD 北大核心 2007年第11期19-25,共7页
较为详细地回顾了流形学习中非线性维数约简方法,分析了它们各自的优势和不足。与传统的线性维数约简方法相比较,可以发现非线性高维数据的本质维数,有利于进行维数约简和数据分析。最后展望了流形学习中非线性维数方法的未来研究方向,... 较为详细地回顾了流形学习中非线性维数约简方法,分析了它们各自的优势和不足。与传统的线性维数约简方法相比较,可以发现非线性高维数据的本质维数,有利于进行维数约简和数据分析。最后展望了流形学习中非线性维数方法的未来研究方向,期望进一步拓展流形学习的应用领域。 展开更多
关键词 维数约简 流形学习 多维尺度 等距映射 拉普拉斯特征映射 局部线性嵌入 局部空间排列
在线阅读 下载PDF
基于流形学习的高光谱图像非线性降维算法 被引量:3
16
作者 杨磊 唐晓燕 《河南理工大学学报(自然科学版)》 CAS 北大核心 2016年第5期660-665,共6页
针对高光谱图像同一像元内存在多种地物种类,且地物之间具有多重反射,导致高光谱数据的非线性,采用传统的线性降维算法效果不佳等问题,提出利用流形学习的方法来寻找嵌入在高维观测数据空间的低维光滑流形,实现高光谱数据的非线性光谱... 针对高光谱图像同一像元内存在多种地物种类,且地物之间具有多重反射,导致高光谱数据的非线性,采用传统的线性降维算法效果不佳等问题,提出利用流形学习的方法来寻找嵌入在高维观测数据空间的低维光滑流形,实现高光谱数据的非线性光谱降维。模拟和真实高光谱遥感数据实验结果表明,与传统的线性降维方法 PCA相比,经过等距映射、局部切空间排列等流行学习算法降维后的高光谱图像具有更好的光谱端元可分性。 展开更多
关键词 高光谱图像 线性降维 流行学习 等距映射 局部空间排列
在线阅读 下载PDF
基于敏感特征选择与流形学习维数约简的故障诊断 被引量:42
17
作者 苏祖强 汤宝平 姚金宝 《振动与冲击》 EI CSCD 北大核心 2014年第3期70-75,共6页
针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selectio... 针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selection,IKDM-FS),在核空间中计算样本类间距离和类内散度,优选出使样本类间距大、类内散度小的特征,并根据特征的敏感程度对特征进行加权。通过线性局部切空间排列算法(Linear Local Tangent Space Alignment,LLTSA)对由敏感特征组成的特征子集进行特征融合,提取出对故障分类更加敏感的融合特征,并输入加权k最近邻分类器(Weighted k Nearest Neighbor Classifier,WKNNC)进行故障识别。WKNNC具有比k最近邻分类器(k Nearest Neighbor Classifier,KNNC)更加稳定的识别精度。最后,通过滚动轴承故障模拟实验验证了该方法的有效性。 展开更多
关键词 故障诊断 特征选择 改进的核空间距离测度 线性局部空间排列 加权k最近邻分类器
在线阅读 下载PDF
基于邻域自适应LLTSA维数约简的故障诊断方法研究 被引量:3
18
作者 徐琼燕 吴印华 《机械强度》 CAS CSCD 北大核心 2018年第1期27-32,共6页
针对线性局部切空间排列(LLTSA)在进行故障特征降维时邻域大小难以确定的问题,提出了基于邻域自适应线性局部切空间排列(NA-LLTSA)维数约简的故障诊断方法。即首先从机械振动信号中全面提取出高维的混合故障特征集;其次采用基于Parzen... 针对线性局部切空间排列(LLTSA)在进行故障特征降维时邻域大小难以确定的问题,提出了基于邻域自适应线性局部切空间排列(NA-LLTSA)维数约简的故障诊断方法。即首先从机械振动信号中全面提取出高维的混合故障特征集;其次采用基于Parzen窗概率密度的邻域自适应线性局部切空间排列进行维数约简,获得低维特征;最后通过支持向量机(SVM)来建立低维特征与故障类别的对应关系,实现故障诊断。NA-LLTSA维数约简增强了故障特征的辨识能力,而SVM优异的模式识别能力能够进一步提高故障诊断精度。滚动轴承的故障诊断实例验证了所提故障诊断方法的有效性。 展开更多
关键词 故障诊断 维数约简 邻域自适应线性局部空间排列 支持向量机
在线阅读 下载PDF
基于LTSA的ICA方法及其在化工过程监控中的应用 被引量:1
19
作者 张少捷 王振雷 钱锋 《化工进展》 EI CAS CSCD 北大核心 2010年第10期1840-1844,共5页
独立成分分析(ICA)方法在线性非高斯过程的监控领域得到了成功应用,当过程数据非线性较强时效果不理想。局部切空间排列(LTSA)方法能够从在高维空间中呈现高度扭曲的数据集中发现隐含在其中的非线性结构。本文结合ICA和LTSA二者的优点,... 独立成分分析(ICA)方法在线性非高斯过程的监控领域得到了成功应用,当过程数据非线性较强时效果不理想。局部切空间排列(LTSA)方法能够从在高维空间中呈现高度扭曲的数据集中发现隐含在其中的非线性结构。本文结合ICA和LTSA二者的优点,提出LTSA-ICA过程监控方法,首先用LTSA从高维数据空间中提取出低维子流形,然后在这个低维子流形上执行线性ICA算法,在保留ICA对非高斯过程处理优势的同时,较好地解决了非线性的问题。在田纳西-伊斯曼(TE)过程上的仿真表明上述方法的有效性。 展开更多
关键词 局部空间排列 独立成分分析 过程监控 线性
在线阅读 下载PDF
基于LCD-LLTSA的电动汽车电机轴承故障特征频率提取 被引量:2
20
作者 史素敏 杨春长 王斐 《计量学报》 CSCD 北大核心 2020年第10期1267-1272,共6页
为有效提取出电动汽车电机轴承故障特征频率,将局部特征尺度分解、线性局部切空间排列和包络分析进行结合,用于电动汽车电机轴承的故障特征频率的提取。首先利用局部特征尺度分解对电动汽车电机轴承故障信号进行分解,得到若干个内禀尺... 为有效提取出电动汽车电机轴承故障特征频率,将局部特征尺度分解、线性局部切空间排列和包络分析进行结合,用于电动汽车电机轴承的故障特征频率的提取。首先利用局部特征尺度分解对电动汽车电机轴承故障信号进行分解,得到若干个内禀尺度分量;然后利用线性局部切空间排列对由内禀尺度分量构成的矩阵进行降维处理,得到低维矩阵并以此进行信号重构;最后对重构信号进行包络谱分析,获得故障特征频率。仿真信号和实验信号的实验结果验证了方法的有效性。 展开更多
关键词 计量学 滚动轴承 故障诊断 特征频率 局部特征尺度分解 线性局部空间排列
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部