采用频率测量实现目标定位具有成本低、可靠性高的特点,仅利用到达频率差(frequency difference of arrival,FDOA)测量,提出了一种静态目标位置的精确定位方法。针对所建立的频率测量方程的高度非线性这一问题,通过引入辅助变量,将其转...采用频率测量实现目标定位具有成本低、可靠性高的特点,仅利用到达频率差(frequency difference of arrival,FDOA)测量,提出了一种静态目标位置的精确定位方法。针对所建立的频率测量方程的高度非线性这一问题,通过引入辅助变量,将其转化为矩阵形式的伪线性方程;然后利用半正定松弛(semi-definite relaxation,SDR)方法将非凸的加权最小二乘(weighted least square,WLS)问题松弛为半正定规划(semidefinite programming,SDP)问题,从而进一步精确估计未知变量;最后对所提出方法的均方根误差(rootmean-square error,RMSE)进行了分析,以验证其性能。仿真结果表明,在较低的高斯噪声水平下,所采用的半正定松弛方法的性能能够达到克拉美罗下界(Cramer-Rao lower bound,CRLB),且该算法对几何形状具有较高的鲁棒性;此外,在使用较少数量的传感器时,其RMSE性能要优于两阶段加权最小二乘(two-stage weighted least square,TSWLS)法。展开更多
为提高频控阵-多输入多输出(frequency diverse array multiple-input and multiple-output,FDA-MIMO)雷达系统的抗干扰能力,提出一种基于双子脉冲模式的FDA-MIMO雷达接收滤波器-发射频偏联合优化设计方法。在传统脉冲的基础上,引入双...为提高频控阵-多输入多输出(frequency diverse array multiple-input and multiple-output,FDA-MIMO)雷达系统的抗干扰能力,提出一种基于双子脉冲模式的FDA-MIMO雷达接收滤波器-发射频偏联合优化设计方法。在传统脉冲的基础上,引入双子脉冲发射模式并建立相关信号模型。在此基础上,建立以最大信干噪比(signal-to-interference-plus-noise ratio,SINR)为准则的接收滤波器-发射频偏联合优化问题。为了得到最优的接收-发射滤波器设计方案,引入一种迭代优化算法,将该优化问题拆分为接收滤波器优化和发射频偏优化两个独立的子问题。为进一步完成对发射频偏的设计,将其转化为关于发射导向矢量的设计问题,采用半正定松弛和随机方法,并通过发射导向矢量和频偏的数学关系获得频偏的最终设计方案。最后,通过仿真实验验证了所提双子脉冲FDA-MIMO雷达模式和接收滤波器-发射频偏联合优化设计方法对提高雷达系统抗干扰能力的有效性。展开更多
In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise c...In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise completely positive(RPCP)decomposition.We study the properties of RPCP matrices and give some necessary and sufficient conditions for a matrix pair to be RPCP.First,we give an equivalent decomposition for the RPCP matrices,which is different from the RPCP-decomposition and show that the matrix pair(X,X)is RPCP if and only if X is completely positive.Besides,we also prove that the RPCP matrices checking problem is equivalent to the separable completion problem.A semidefinite algorithm is also proposed for detecting whether or not a matrix pair is RPCP.The asymptotic and finite convergence of the algorithm are also discussed.If it is RPCP,we can further give a RPCP-decomposition for it;if it is not,we can obtain a certificate for this.展开更多
文摘采用频率测量实现目标定位具有成本低、可靠性高的特点,仅利用到达频率差(frequency difference of arrival,FDOA)测量,提出了一种静态目标位置的精确定位方法。针对所建立的频率测量方程的高度非线性这一问题,通过引入辅助变量,将其转化为矩阵形式的伪线性方程;然后利用半正定松弛(semi-definite relaxation,SDR)方法将非凸的加权最小二乘(weighted least square,WLS)问题松弛为半正定规划(semidefinite programming,SDP)问题,从而进一步精确估计未知变量;最后对所提出方法的均方根误差(rootmean-square error,RMSE)进行了分析,以验证其性能。仿真结果表明,在较低的高斯噪声水平下,所采用的半正定松弛方法的性能能够达到克拉美罗下界(Cramer-Rao lower bound,CRLB),且该算法对几何形状具有较高的鲁棒性;此外,在使用较少数量的传感器时,其RMSE性能要优于两阶段加权最小二乘(two-stage weighted least square,TSWLS)法。
文摘为提高频控阵-多输入多输出(frequency diverse array multiple-input and multiple-output,FDA-MIMO)雷达系统的抗干扰能力,提出一种基于双子脉冲模式的FDA-MIMO雷达接收滤波器-发射频偏联合优化设计方法。在传统脉冲的基础上,引入双子脉冲发射模式并建立相关信号模型。在此基础上,建立以最大信干噪比(signal-to-interference-plus-noise ratio,SINR)为准则的接收滤波器-发射频偏联合优化问题。为了得到最优的接收-发射滤波器设计方案,引入一种迭代优化算法,将该优化问题拆分为接收滤波器优化和发射频偏优化两个独立的子问题。为进一步完成对发射频偏的设计,将其转化为关于发射导向矢量的设计问题,采用半正定松弛和随机方法,并通过发射导向矢量和频偏的数学关系获得频偏的最终设计方案。最后,通过仿真实验验证了所提双子脉冲FDA-MIMO雷达模式和接收滤波器-发射频偏联合优化设计方法对提高雷达系统抗干扰能力的有效性。
文摘In this paper,we introduce the real pairwise completely positive(RPCP)matrices with one of them is necessarily positive semidefinite while the other one is necessarily entrywise nonnegative,which has a real pairwise completely positive(RPCP)decomposition.We study the properties of RPCP matrices and give some necessary and sufficient conditions for a matrix pair to be RPCP.First,we give an equivalent decomposition for the RPCP matrices,which is different from the RPCP-decomposition and show that the matrix pair(X,X)is RPCP if and only if X is completely positive.Besides,we also prove that the RPCP matrices checking problem is equivalent to the separable completion problem.A semidefinite algorithm is also proposed for detecting whether or not a matrix pair is RPCP.The asymptotic and finite convergence of the algorithm are also discussed.If it is RPCP,we can further give a RPCP-decomposition for it;if it is not,we can obtain a certificate for this.