期刊文献+

基于半正定松弛的MIMO盲检测 被引量:1

Blind Detection of MIMO via Semidefinite Relaxation
在线阅读 下载PDF
导出
摘要 为解决MIMO系统盲检测问题,该文以最大似然序列检测为估计准则,通过推导建立了一种新的半正定松弛(Semi Definite Relaxation,SDR)求解模型,使得到的松弛解的秩等于发送天线数。为了解决了松弛解秩大于1时估计原始发送序列的难题,该文提出一种特征向量近似法和随机法相结合的方法。通过限定目标函数的取值上限,使算法能够根据目标函数值自适应判断求解发送序列个数,从而减少每次求解的约束个数和SDR的求解次数,分析表明算法的计算复杂度与发送天线数成线性关系。最后,通过仿真表明所提算法能够在与秩1的算法性能保持相当的条件下减少计算时间,并验证了算法计算复杂度与发送天线数成线性关系。 In order to solve the problem of blind detection of MIMO system, this paper takes maximum-likelihood sequence detection as the criterion and derives the formulas to get a model based on SemidDefinite Relaxation. The rank of SDR solution equals to the number of the transmit antennas. For the rank of SDR solution is greater than 1, a new method is proposed to approximate the solution of the original problem, which combines the eigenvector approximation method and randomization method. By setting the upper limit of objective function, the proposed method could judge the number of detection sequence adaptively and reduce constrains number and the number of solving SDR. The analysis shows that the computation complexity of proposed method has linear relationship with the number of transmit antennas. At last, simulation results indicate that compared with Rank-1 algorithm, the proposed detector could provide the same bit error performance with decrease of computation cost, and validate the linear relationship between the computation complexity and the number of transmit antennas.
作者 李浩 彭华
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2893-2899,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61401511)
关键词 多输入多输出 盲检测 半正定松弛 Multiple-Input Multiple-Output (MIMO) Blind detection SemiDefinite Relaxation (SDR)
作者简介 通信作者:李浩leo.1ihao@163.com男,1986年生,博士生,研究方向为通信信号处理、盲信号处理. 彭华:男,1973年生,教授,研究方向为通信信号处理、软件无线电.
  • 相关文献

参考文献1

二级参考文献21

  • 1Aziz A,Zeng M,Zhou J. Robust beamforming with channel uncertainty for two-way relay networks[A].Ottawa,Canada,2012.3632-3636.
  • 2Cumanan K,Rahulamathavan Y,Lambotharan S. MMSE based beamforming techniques for relay broadcast channels[J].IEEE Transactions on Vehicular Technology,2013,(08):726-737.
  • 3Liao B,Chan S C. Robust recursive beamforming in the presence of impulsive noise and steering vector mismatch[J].Journal of Signal Processing Systems,2013,(01):1-10.
  • 4Ma S,Dechun S. Chance constrained robust beamforming in cognitive radio networks[J].IEEE Communications Letter,2013,(01):67-70.
  • 5Kumar N S,Philip D J,Bhattacharya C. DoA estimation using compressive beamforming in shallow ocean using acoustic vector sensors[A].Kochi,India,2012.551-554.
  • 6Wong C H,Siew Z W,Tan M K. Optimization of distributed and collaborative beamforming in wireless sensor networks[A].Phuket,Thailand,2012.84-89.
  • 7Alrabadi O N,Tsakalaki E,Huang H. Beamforming via large and dense antenna arrays above a clutter[J].IEEE Journal on Selected Areas in Communications,2013,(02):314-325.
  • 8Du H,Ratnarajah T,Pesavento M. Joint transceiver beamforming in MIMO cognitive radio network via second-order cone programming[J].IEEE Transactions on Signal Processing,2012,(02):781-792.
  • 9Capon J. High resolution frequency-wavenumber spectrum analysis[J].PROCEEDINGS OF THE IEEE,1969,(08):1408-1418.
  • 10Li J,Stoica P,Wang Z. On robust Capon beamforming and diagonal loading[J].IEEE Transactions on Signal Processing,2012,(07):1702-1715.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部