In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was p...In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs.展开更多
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by...The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.展开更多
When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The stru...When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings' loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 k N. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing.展开更多
The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the anal...The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved.展开更多
Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the ...Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the theoretical method is verified by using a specific example combined with other methods.It is found that the low-order natural frequency corresponds to the first mode of vibration,and the high-order natural frequency corresponds to the second mode of vibration,while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions.With the increasing of the order of natural frequency,the influence on the dynamic mechanical response of anchorage system decreases gradually.Additionally,a calculating method,which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance,is proposed to meet the seismic precautionary requirements.This method is verified to be feasible and effective by being applied to an actual project.The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme.展开更多
基金Project(50975192) supported by the National Natural Science Foundation of ChinaProject(10YFJZJC14100) supported by Tianjin Municipal Natural Science Foundation of China
文摘In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs.
基金Project(030103) supported by the Weaponry Equipment Pre-Research Key Foundation of ChinaProject(69982009) supported by the National Natural Science Foundation of China
文摘The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.
基金Project(51375001) supported by the National Natural Science Foundation of ChinaProject(2013CB035400) supported by the National Basic Research Program of China
文摘When the tunneling boring machine(TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings' loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm; the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s; the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2; the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 k N. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing.
基金Work(R0A-2007-000-20042-0) partly supported by the Second Stage of Brain Korea 21 Projectspartly by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program funded by the Ministry of Science and Technology of Korea
文摘The design and fabrication processes of a novel scanner with minimized coupling motions for a high-speed atomic force microscope (AFM) were addressed. An appropriate design modification was proposed through the analyses of the dynamic characteristics of existing linear motion stages using a dynamic analysis program, Recurdyn. Because the scanning speed of each direction may differ, the linear motion stage for a high-speed scanner was designed to have different resonance frequencies for the modes, with one dominant displacement in the desired directions. This objective was achieved by using one-direction flexure mechanisms for each direction and mounting one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separated the frequencies of two vibration modes with one dominant displacement in each desired direction, and hence suppressed the coupling between motions in two directions. A pair of actuators was used for each axis to decrease the crosstalk between the two motions and give a sufficient force to actuate the slow motion stage, which carried the fast motion stage, A lossy material, such as grease, was inserted into the flexure hinge to suppress vibration problems that occurred when using an input triangular waveforrn. With these design modifications and the vibration suppression method, a novel scanner with a scanning speed greater than 20 Hz is achieved.
基金Projects(51308273,41372307,41272326)supported by the National Natural Science Foundation of ChinaProject(20090211110016)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2010(A)06-b)supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the theoretical method is verified by using a specific example combined with other methods.It is found that the low-order natural frequency corresponds to the first mode of vibration,and the high-order natural frequency corresponds to the second mode of vibration,while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions.With the increasing of the order of natural frequency,the influence on the dynamic mechanical response of anchorage system decreases gradually.Additionally,a calculating method,which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance,is proposed to meet the seismic precautionary requirements.This method is verified to be feasible and effective by being applied to an actual project.The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme.