期刊文献+
共找到515篇文章
< 1 2 26 >
每页显示 20 50 100
采用动态种群策略的多目标粒子群优化算法 被引量:1
1
作者 杜睿山 井远光 +3 位作者 付晓飞 孟令东 张豪鹏 王紫珊 《吉林大学学报(理学版)》 北大核心 2025年第3期845-854,共10页
针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局... 针对多目标粒子群优化算法中多样性和收敛性难以平衡的问题,提出一种基于动态种群的多目标粒子群优化算法.该算法种群数量的增加或减少取决于档案中的资源,从而调节种群数量.一方面,通过基于网格技术的局部扰动添加粒子,以增加粒子的局部搜索能力,提高算法的多样性;另一方面,为防止种群规模过度增长,利用非支配排序和种群密度控制种群规模,以加快算法搜索进度,避免过早收敛.选取5种对比算法在测试函数上进行实验,实验结果表明,该算法具有明显的多样性和收敛性优势. 展开更多
关键词 动态种群 粒子优化 多目标优化 多样性 收敛性
在线阅读 下载PDF
应用改进莱维飞行粒子群算法的相机标定方法
2
作者 刘璨 李泰星 +1 位作者 刘焕牢 郑重 《机械设计与制造》 北大核心 2025年第9期363-367,373,共6页
针对传统相机标定方法的精度不高、标定结果易陷入局部最优解的问题,提出一种基于改进莱维飞行粒子群算法的相机标定方法。与相机标定模型进行耦合,建立以相机内外参数为优化变量,以焦距、相机光心坐标、扭曲系数及畸变系数等为约束条件... 针对传统相机标定方法的精度不高、标定结果易陷入局部最优解的问题,提出一种基于改进莱维飞行粒子群算法的相机标定方法。与相机标定模型进行耦合,建立以相机内外参数为优化变量,以焦距、相机光心坐标、扭曲系数及畸变系数等为约束条件,以特征点的理想投影坐标与畸变校正坐标之间的残差为目标的优化函数。通过引入基于混沌搜索和重心反向学习的粒子群初始化机制,基于正弦变化的学习因子调节策略、惯性系数自适应调整以及设计早熟粒子自适应变异机制,实现相机内外参数的快速和全局收敛。实验对比结果验证了提出方法具有更高的标定精度和更强的稳定性。 展开更多
关键词 相机标定 莱维飞行粒子算法 初始化种群 自适应变异
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
3
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子优化算法 任务分配方法
在线阅读 下载PDF
面向动态公交的离散分层记忆粒子群优化算法 被引量:2
4
作者 黄君泽 吴文渊 +2 位作者 李轶 石明全 王正江 《计算机工程》 CAS CSCD 北大核心 2024年第4期20-30,共11页
随着智慧城市、智慧交通的发展,移动互联网和公交智能基础设施以及相关数据的不断完善,通过用户手机预约公交服务的新型公交运营方式——动态公交,已经成为许多城市公交发展的重要探索方向。但目前,对动态公交问题的建模、算法研究不足... 随着智慧城市、智慧交通的发展,移动互联网和公交智能基础设施以及相关数据的不断完善,通过用户手机预约公交服务的新型公交运营方式——动态公交,已经成为许多城市公交发展的重要探索方向。但目前,对动态公交问题的建模、算法研究不足。基于这一研究现状,提出动态公交问题模型和面向动态公交的离散分层记忆粒子群优化(PSO)算法。首先给出动态公交问题的目标函数和约束条件,给出动态公交问题的解的形式,并定义解的编辑距离;其次提出使用数据驱动的预计算路径集生成PSO算法的优质初始解的方法,给出基于解的编辑距离的PSO算法中粒子的变异概率和自适应收敛系数的计算方式;最后提出将粒子群分层求解的方法,其中低层粒子群可复用、可继承,从而减少单时间片内、时间片间复制和重初始化带来的性能损耗。基于重庆市北碚区蔡家岗街道的真实场景和亿级历史数据建立仿真环境进行实验,实验结果表明:相对于不分层PSO算法,分层PSO算法通过复用和继承能缩短超80%计算用时;自适应参数和变异机制能帮助算法更稳定地收敛到更优解;相对于传统公交系统,动态公交能在同等运力限制下,提高22%的乘客接单率,节省39.1%的乘客出行时间,所提算法能满足公交运营商在片区内进行动态公交调度的需求;相对于对比算法,所提算法平均缩短了85.3%的计算用时,并且在仅耗用80%里程的情况下提高了至少12%的接单率。 展开更多
关键词 智慧交通 动态公交问题 电召问题 粒子优化算法 预计算路径集 自适应变异
在线阅读 下载PDF
改进粒子群算法的径向柱塞液压马达内曲线优化
5
作者 李佳璇 康绍鹏 +4 位作者 杨静 刘凯磊 强红宾 柯贤胜 崔毅 《现代制造工程》 北大核心 2025年第2期69-75,共7页
径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速... 径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速度曲线重构为含补偿区的等加速度曲线,以减小冲击和接触应力突变值。以粒子群算法(Particle Swarm Optimization,PSO)为基础,加入自适应非线性动态权重与多子种群竞争优化策略,构建一种改进粒子群算法,对各区段角度进行重新分配,重新生成含补偿区的径向柱塞液压马达内曲线。对比优化前后的结果表明,最大接触应力下降了2.54%,最大接触应力处的突变值下降至0;接触应力不再阶跃式上升,有上升过程,冲击较小。该研究能够为径向柱塞液压马达的设计提供参考,有效减缓疲劳与磨损,降低冲击影响,从而延长液压马达的使用寿命。 展开更多
关键词 径向柱塞液压马达 内曲线 自适应非线性动态权重 多子种群竞争优化策略 改进粒子算法
在线阅读 下载PDF
基于遗传粒子群动态聚类算法的物流柔性分拣系统品规分配 被引量:1
6
作者 杜佳奇 杨旭东 +2 位作者 孙栋 张磊 王晋冰 《包装工程》 CAS 北大核心 2024年第5期126-134,共9页
目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态... 目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态聚类(GAPSO-K)算法进行求解。首先,结合各品规分拣量对品规相似系数进行改进,并将其作为适应度函数;然后在粒子群算法中对惯性权重因子进行改进,使其值可以进行自适应改变;最后,在粒子群动态聚类算法中引入遗传算法中的交叉变异扩大解的搜索范围,基于Matlab对文中的其他算法进行求解对比,求得结果在EM-plant中进行仿真验证。结果结合某烟草物流配送中心数据仿真验证,利用GAPSO-K算法处理订单的时间为234.5 s,较传统时间大幅度较少,有效提升了柔性物流分拣效率。结论采用该算法可充分发挥2种算法的优良性,具有更好的收敛性及寻优性,为柔性物流品规分配提供了新思路。 展开更多
关键词 品规分配 品规相似系数 惯性权重因子 遗传粒子动态聚类算法
在线阅读 下载PDF
电力系统机组组合问题的动态双种群粒子群算法 被引量:6
7
作者 李丹 高立群 +1 位作者 王珂 黄越 《计算机应用》 CSCD 北大核心 2008年第1期104-107,共4页
针对标准粒子群优化算法易陷入局部最优点的缺点,提出了动态双种群粒子群优化算法(DDPSO)。该算法中两个子种群规模随进化过程不断变化,进化中分别采用不同的学习策略且相互交换信息。将该算法应用于机组组合问题中,采用实数矩阵编码方... 针对标准粒子群优化算法易陷入局部最优点的缺点,提出了动态双种群粒子群优化算法(DDPSO)。该算法中两个子种群规模随进化过程不断变化,进化中分别采用不同的学习策略且相互交换信息。将该算法应用于机组组合问题中,采用实数矩阵编码方法对发电计划进行编码,将两层优化问题转化为单层优化问题,直接运用DDPSO算法求解。仿真结果表明,用该方法解决机组组合问题具有良好的精度和鲁棒性。 展开更多
关键词 粒子优化 动态种群 学习策略 机组组合
在线阅读 下载PDF
基于动态双种群粒子群算法的柔性工作车间调度 被引量:3
8
作者 李丹 高立群 +1 位作者 马佳 李扬 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期1238-1242,共5页
针对标准粒子群优化算法存在易陷入局部最优点的缺点,提出了一种基于动态双种群的粒子群优化算法(DPSO).DPSO算法将种群划分成两个种群规模随进化过程不断变化的子种群,两个子种群分别采用不同的学习策略进行进化,并在进化过程中相互交... 针对标准粒子群优化算法存在易陷入局部最优点的缺点,提出了一种基于动态双种群的粒子群优化算法(DPSO).DPSO算法将种群划分成两个种群规模随进化过程不断变化的子种群,两个子种群分别采用不同的学习策略进行进化,并在进化过程中相互交换信息.该算法提高了全局寻优能力,有效地避免了早熟收敛的发生.将以DPSO算法为基础的排序算法和启发式分配算法(HA)相结合形成了解决柔性工作车间调度问题的新方法(DPSO-HA).通过对算例的研究和与其他方法的比较表明,该方法是有效可行的. 展开更多
关键词 种群 粒子优化 学习策略 DPSO-HA算法 柔性工作车间调度
在线阅读 下载PDF
基于Maximin的动态种群多目标粒子群算法 被引量:3
9
作者 冯琳 毛志忠 袁平 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期913-916,共4页
针对粒子群优化算法在处理多目标函数优化问题的过程中,往往会出现局部收敛现象,在MOPSO算法基础上提出了一种新的多目标粒子群优化算法.该算法在运行过程中采用动态调整粒子群种群数目的方式使粒子摆脱局部最优解对其的吸引;同时为了... 针对粒子群优化算法在处理多目标函数优化问题的过程中,往往会出现局部收敛现象,在MOPSO算法基础上提出了一种新的多目标粒子群优化算法.该算法在运行过程中采用动态调整粒子群种群数目的方式使粒子摆脱局部最优解对其的吸引;同时为了克服粒子种群多样性降低带来的影响,将粒子的相对适应度方差引入到Maximin计算公式中.然后基于Pareto最优的概念,利用方差Maximin策略来评价最优解,并保存在可变的外部精英集中,以保证结果的分布性良好.最后,该方法在仿真中取得了良好效果,可以更广泛地应用到复杂工业多目标优化领域中. 展开更多
关键词 多目标优化问题 粒子优化算法 动态种群 方差Maximin策略 局部收敛
在线阅读 下载PDF
动态环境下的种群扩散粒子群优化算法 被引量:3
10
作者 赵传信 王汝传 季一木 《计算机工程》 CAS CSCD 北大核心 2010年第19期24-26,共3页
传统的粒子群优化算法在优化过程中难以有效地监测环境的动态变化和响应。针对上述问题,通过增加外围监测粒子加强监测有效性,提出一种可以动态响应环境变化的种群多样性扩散函数,在此基础上设计一种扩散粒子群优化算法(DPSO),在动态环... 传统的粒子群优化算法在优化过程中难以有效地监测环境的动态变化和响应。针对上述问题,通过增加外围监测粒子加强监测有效性,提出一种可以动态响应环境变化的种群多样性扩散函数,在此基础上设计一种扩散粒子群优化算法(DPSO),在动态环境中与APSO、CPSO进行比较,实验结果表明,DPSO可以更有效地跟踪动态环境下极值的变化并快速收敛。 展开更多
关键词 粒子优化算法 多样性 动态环境 扩散
在线阅读 下载PDF
基于动态种群结构的粒子群算法及仿真研究 被引量:1
11
作者 张顶学 关治洪 刘新芝 《系统仿真学报》 CAS CSCD 北大核心 2008年第22期6151-6153,6157,共4页
针对标准粒子群算法易陷入局部最优而早熟的问题,提出了一种基于动态种群结构的粒子群算法。该算法在种群结构中引入小世界网络模型,由于网络模型的演化,使算法具有动态的种群结构,从而保持了种群的多样性。同时为了使粒子尽可能地分布... 针对标准粒子群算法易陷入局部最优而早熟的问题,提出了一种基于动态种群结构的粒子群算法。该算法在种群结构中引入小世界网络模型,由于网络模型的演化,使算法具有动态的种群结构,从而保持了种群的多样性。同时为了使粒子尽可能地分布在不同的搜索空间,在网络模型演化过程中考虑了结点的个体价值。为了加快算法的收敛速度,在进化后期采用全局模型粒子群算法。通过对三个经典测试函数优化问题的数值仿真并与其它方法进行比较,结果表明了算法的有效性和实用性。 展开更多
关键词 粒子算法 小世界网络 种群结构 全局模型 局部模型
在线阅读 下载PDF
种群熵竞争粒子群算法
12
作者 王霞 王卓然 +1 位作者 张珊 王勇 《计算机工程与应用》 CSCD 北大核心 2024年第20期96-115,共20页
为进一步提高竞争粒子群优化算法的收敛性和求解精度,提出一种种群熵竞争粒子群算法(population entropy competitive particle swarm optimization algorithm,CSOPE);提出非线性惯性权重调整策略,以均衡粒子的全局勘探能力和局部开采能... 为进一步提高竞争粒子群优化算法的收敛性和求解精度,提出一种种群熵竞争粒子群算法(population entropy competitive particle swarm optimization algorithm,CSOPE);提出非线性惯性权重调整策略,以均衡粒子的全局勘探能力和局部开采能力;提出一种基于熵模型的种群状态检测策略,根据种群的标准化四分位差和标准化中位数差计算种群熵,通过相邻两代种群的熵值之差监测种群状态,当种群处于收敛状态时,对赢家粒子利用灰狼搜索进行局部开采,以提高算法的收敛精度。在CEC2008和CEC2013共21个测试函数上将所提算法与其他8种优化算法进行对比,实验结果表明,CSOPE算法的求解精度和收敛性得到了显著提高。将CSOPE算法应用到无线传感器网络节点定位问题,结果表明CSOPE算法具有较高的定位精度。 展开更多
关键词 竞争粒子算法 种群状态 种群 惯性权重 灰狼搜索
在线阅读 下载PDF
多种群变异非线性动态粒子群算法求解机场登机口分配问题 被引量:1
13
作者 宋阿妮 包贤哲 《计算机应用与软件》 北大核心 2023年第6期234-241,342,共9页
针对机场登机口分配不均造成航班拥堵和资源浪费的问题,提出多种群变异非线性动态粒子群算法。该算法设立了多个粒子种群进化并变异,将每次变异迭代后的全局最优个体纳入一个优质种群,而后结合非线性策略和动态策略对优质群的进化公式... 针对机场登机口分配不均造成航班拥堵和资源浪费的问题,提出多种群变异非线性动态粒子群算法。该算法设立了多个粒子种群进化并变异,将每次变异迭代后的全局最优个体纳入一个优质种群,而后结合非线性策略和动态策略对优质群的进化公式做出了改进,优质种群通过此进化公式迭代得到问题的最优解。该算法明显加大了前期的搜索范围和种群多样性,并有效避免了算法陷入局部最优的早熟问题。为了证明改进策略的有效性,将改进策略分步加进传统PSO并用四种经典测试函数测试改进效果,结果证明了改进策略的有效性。最后将PSO、GA、FA以及提出新算法对机场登机口问题进行求解。结果证明,该算法的精确度相对于FA、GA、PSO提高了23.13%、14.94%、8.01%,对于机场登机口有着更好的适应性。 展开更多
关键词 机场登机口 粒子算法 变异 多种群 非线性 动态
在线阅读 下载PDF
基于动态种群和广义学习的粒子群算法及应用
14
作者 刘衍民 赵庆祯 《计算机工程与科学》 CSCD 北大核心 2011年第5期91-96,共6页
为了提升粒子跳出局部最优解的能力,本文提出一种动态种群和广义学习粒子群算法(DCPSO)。在算法运行过程中,引入种群增加策略和减少策略以提升种群的多样性,进而提升粒子跳出局部最优解的能力;同时引入广义学习策略以增加粒子飞向全局... 为了提升粒子跳出局部最优解的能力,本文提出一种动态种群和广义学习粒子群算法(DCPSO)。在算法运行过程中,引入种群增加策略和减少策略以提升种群的多样性,进而提升粒子跳出局部最优解的能力;同时引入广义学习策略以增加粒子飞向全局最优位置的概率。在基准函数的测试中,结果显示DCPSO算法比其它PSO算法有更好的性能;在实际应用中,通过对起重机箱型主梁模型进行优化,结果显示DCPSO算法比其它算法获得了质量更高的解。 展开更多
关键词 动态种群 广义学习 粒子算法
在线阅读 下载PDF
混沌动态种群数粒子群优化算法 被引量:6
15
作者 张寅 曹德欣 《计算机工程与应用》 CSCD 北大核心 2011年第35期38-40,共3页
针对粒子群优化算法在整个迭代过程中粒子极易陷于局部极值区域,提出一种混沌动态粒子数的粒子群优化算法,也即在判定全局最优值处于停滞时,以混沌策略对粒子进行位置初始化后加入种群,从而有效地保证了粒子群的多样性。用4个测试函数... 针对粒子群优化算法在整个迭代过程中粒子极易陷于局部极值区域,提出一种混沌动态粒子数的粒子群优化算法,也即在判定全局最优值处于停滞时,以混沌策略对粒子进行位置初始化后加入种群,从而有效地保证了粒子群的多样性。用4个测试函数验证了该算法具有很好的寻优能力和较高的搜索精度。 展开更多
关键词 粒子优化算法 全局最优值 混沌 种群
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
16
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于自适应动态粒子群优化的RAK-SVD方法 被引量:1
17
作者 乐友喜 姚晓辰 +1 位作者 付俊楠 葛传友 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期494-503,共10页
K均值奇异值分解(K-SVD)算法是一种行之有效的地震资料去噪方法,但由于其稀疏分解存在不确定性,需要引入正则项对其改进。为此,在常规粒子群算法的基础上,提出了一种自适应动态粒子群算法优化正则化参数的正则化近似K-SVD(RAK-SVD)去噪... K均值奇异值分解(K-SVD)算法是一种行之有效的地震资料去噪方法,但由于其稀疏分解存在不确定性,需要引入正则项对其改进。为此,在常规粒子群算法的基础上,提出了一种自适应动态粒子群算法优化正则化参数的正则化近似K-SVD(RAK-SVD)去噪方法。首先通过修改字典原子和相关参数,解决了由于常规粒子群算法的惯性参数固定不变,导致后期搜索效率下降的问题;其次将正则化系数引入近似K-SVD(AK-SVD)方法,明显提升了去噪效果;最后利用自适应动态粒子群算法自动优选AK-SVD方法中的正则化参数,提高了稀疏分解的确定性,在对强反射信号进行去噪的同时加强了对弱信号的保护。模型测试和实际应用均表明,该方法有利于弱信号的提取和识别,不仅能够显著改善弱地震信号的去噪效果,还提升了计算效率。该方法具有一定的实际应用价值。 展开更多
关键词 自适应动态粒子算法 K-SVD字典 正则化 去噪
在线阅读 下载PDF
求解动态优化问题的多种群骨干粒子群算法 被引量:4
18
作者 陈健 申元霞 纪滨 《计算机工程与应用》 CSCD 北大核心 2017年第19期45-50,108,共7页
针对动态优化问题(Dynamic Optimization Problem,DOP)中所面临的过时记忆和多样性丧失的挑战,提出了一种改进的多种群骨干粒子群优化算法(Multi-swarms Bare Bones Particle Swarm Optimization,MBBPSO)。通过设置环境勘探粒子及时检... 针对动态优化问题(Dynamic Optimization Problem,DOP)中所面临的过时记忆和多样性丧失的挑战,提出了一种改进的多种群骨干粒子群优化算法(Multi-swarms Bare Bones Particle Swarm Optimization,MBBPSO)。通过设置环境勘探粒子及时检测环境的变化,避免了错误信息误导种群的进化方向;环境改变后,利用上一个环境搜索的信息初始化新的种群,提高MBBPSO快速追踪到当前环境的优秀解的能力;当种群陷入停滞时,采用新的进化方程以加强粒子的活性和多种群策略维持群体的多样性。仿真实验表明,MBBPSO在解决动态环境问题中具有较强的竞争力。 展开更多
关键词 动态优化问题 骨干粒子算法 过时记忆 多样性丧失 多种群
在线阅读 下载PDF
求解大规模问题协同进化动态粒子群优化算法 被引量:29
19
作者 梁静 刘睿 +1 位作者 于坤杰 瞿博阳 《软件学报》 EI CSCD 北大核心 2018年第9期2595-2605,共11页
随着工程技术的发展与优化问题数学模型的完善,许多优化问题从低维优化发展成高维的大规模复杂优化,成为实值优化领域的一个热点问题.通过对大规模问题的特点分析,提出了随机动态的协同进化策略,将其加入动态多种群粒子群优化算法中,实... 随着工程技术的发展与优化问题数学模型的完善,许多优化问题从低维优化发展成高维的大规模复杂优化,成为实值优化领域的一个热点问题.通过对大规模问题的特点分析,提出了随机动态的协同进化策略,将其加入动态多种群粒子群优化算法中,实现了对种群粒子和决策变量的双重分组.最后,使用CEC2013的大规模全局优化算法的测试集对新算法进行测试,通过和其他算法的对比,验证算法的有效性. 展开更多
关键词 大规模全局优化算法 动态多种群粒子优化算法 协同进化 基准测试函数
在线阅读 下载PDF
一种惯性权重动态调整的新型粒子群算法 被引量:49
20
作者 刘建华 樊晓平 瞿志华 《计算机工程与应用》 CSCD 北大核心 2007年第7期68-70,共3页
在简要介绍基本PSO算法的基础上,提出了一种根据不同粒子距离全局最优点的距离对基本PSO算法的惯性权重进行动态调整的新型粒子群算法(DPSO),并对新算法进行了描述。以典型优化问题的实例仿真验证了DPSO算法的有效性。
关键词 粒子算法(PSO算法) 全局最优性 动态粒子算法(DPSO) 收敛性
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部