期刊文献+
共找到189篇文章
< 1 2 10 >
每页显示 20 50 100
基于误差补偿及IDBO-BiLSTM的风电功率短期预测 被引量:1
1
作者 魏振宇 姜雪松 杨立发 《科学技术与工程》 北大核心 2025年第6期2397-2405,共9页
针对风电出力稳定性差、随机性强而导致的模型精度差的问题。提出了一种基于二次分解误差补偿的风电功率短期预测模型。首先建立双向长短期记忆(bidirectional long short-term memory,BiLSTM)预测模型对风电功率进行预测并输出预测误... 针对风电出力稳定性差、随机性强而导致的模型精度差的问题。提出了一种基于二次分解误差补偿的风电功率短期预测模型。首先建立双向长短期记忆(bidirectional long short-term memory,BiLSTM)预测模型对风电功率进行预测并输出预测误差。其次,采用了一种利用混沌映射初始化种群、引入黄金正弦策略更新滚球蜣螂位置,并添加动态自适应性权重系数来更新偷窃蜣螂的位置的改进蜣螂优化算法(improved dung beetle optimizer,IDBO)对预测模型参数寻优,防止网络陷入局部最优解,自适应搜寻最优参数组合。然后,采用分解-重构-分解的策略,利用自适应噪声的完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)进行首次分解,并且引入样本熵(sample entropy,SE)与K均值(K-means)将序列按频率进行重构并通过变分模态分解(variational mode decomposition,VMD)将高频误差序列分解成不同频段的误差序列,提高后续模型的预测效率及预测精度。最后,将各分量输入误差补偿模型进行预测并引入Attention机制学习不同时间步的特征关系,并给与不同权重值,加强对关键信息的注意力。通过新疆达坂城风电场实测数据验证了所提模型预测精度高,具有显著优势。 展开更多
关键词 风电功率短期预测 双向长短期记忆网络 改进蜣螂优化算法 完全集合经验模态分解 变分模态分解
在线阅读 下载PDF
计及时-空全域特征增强的广域多风电场风电功率短期预测
2
作者 黄南天 李炳玲 +3 位作者 孙赫宏 王瑶瑶 蔡国伟 张良 《电网技术》 北大核心 2025年第9期3688-3698,I0051,共12页
现有研究多依据地理位置或风电出力判定多风电场空间相关性,却忽视了高预测绝对误差值下风电并网出力的功率波动对电力系统稳定性的潜在威胁。文章提出一种基于时-空全域特征增强的广域多风电场风电功率短期预测模型。首先,在各区域实... 现有研究多依据地理位置或风电出力判定多风电场空间相关性,却忽视了高预测绝对误差值下风电并网出力的功率波动对电力系统稳定性的潜在威胁。文章提出一种基于时-空全域特征增强的广域多风电场风电功率短期预测模型。首先,在各区域实施“两个细则”背景下,采用多风电场出力的平均绝对误差为衡量多风电场风电并网波动对电力系统负面影响主要指标。通过最大相关系数定风电出力预测平均绝对误差强相关气象特征。其次,跨出地理位置相邻约束条件,以多风电场之间出力平均绝对误差为空间相关性构建时-空图边特征。通过时-空图神经网络信息传播机制,提高多场站数值天气预报的利用率,实现时-空全域全特征增强。然后,计及小概率场景影响引入绝对误差损失和交叉熵损失相结合的损失函数,优化不同小样本的类别权重向量。最后,将增强后的特征形成时间序列输入到门控循环单元层以实现广域多风电场短期风电功率预测。实验结果表明,所提方法的均方根误差和平均绝对值误差绝对值百分比分别下降了0.89%~7.85%和3.56%~6.19%。与其他方法的平均绝对误差相比,在小概率场景下最劣的评估指标提高了92.14MW,具有更好的鲁棒性。 展开更多
关键词 广域多风电场 短期风电功率预测 数值天气预报 全域全特征增强 时-空图卷积神经网络
在线阅读 下载PDF
结合增量学习和大猩猩优化算法的GVMD-TSNE-TCN-LSTMre光伏发电功率短期预测方法
3
作者 张益鸣 张一竞 +2 位作者 杨子阳 李佳 钱晶 《太阳能学报》 北大核心 2025年第7期690-700,共11页
光伏短期发电数据维数高,特征复杂,数据特征的分解提取和预测模型的构建是影响预测效果的关键,该文提出一种结合增量学习的嵌入元启发大猩猩参数优化的光伏发电短期预测方法 GVMD-TSNE-TCN-LSTMre,第一层的特征提取采用变分模态分解(VMD... 光伏短期发电数据维数高,特征复杂,数据特征的分解提取和预测模型的构建是影响预测效果的关键,该文提出一种结合增量学习的嵌入元启发大猩猩参数优化的光伏发电短期预测方法 GVMD-TSNE-TCN-LSTMre,第一层的特征提取采用变分模态分解(VMD)和T分布随机近邻嵌入(TSNE)模型,二者结合获得光伏数据中的有效特征,其中VMD涉及惩罚因子和分解模态数两个关键参数的选择,采用元启发大猩猩优化算法(GTO)对其参数进行优化,获得优化特征提取方法(GVMD);第二层的预测模型构建,结合时序卷积神经网络(TCN)和长短期记忆网络(LSTM)建立TCN-LSTM预测模型,完成各特征的学习、叠加和重构,在此基础上采用增量学习的方法(GVMD-TSNE-TCN-LSTMre),基于参数冻结和全链接层更新的增量设计方法不断修改预测模型。最后,采用甘肃省某光伏场功率数据进行仿真验证,验证GVMD-TNSE数据处理的必要性、GTO参数优化算法对所选模型的时效性,以及整体模型的有效性。 展开更多
关键词 光伏发电 短期功率预测 增量学习 大猩猩优化算法 GVMD-TSNE特征分解提取 TCN-LSTM预测模型
在线阅读 下载PDF
改进黑猩猩算法的光伏发电功率短期预测 被引量:6
4
作者 谢国民 陈天香 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期135-143,共9页
针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,... 针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,进行光伏功率预测。首先,利用密度聚类和混合评价函数改进K-means++对原始数据进行自适应类别划分。其次,通过相关性分析和随机森林特征提取构建模型的输入特征集。最后,根据特征集建立基于DK-PCHOA-LSSVM的短期光伏发电预测模型。结合实际算例,结果表明:该模型在恶劣天气下预测精度明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 光伏功率短期预测 自适应聚类 最小二乘支持向量机 黑猩猩优化算法 极端天气
在线阅读 下载PDF
基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测 被引量:8
5
作者 薛阳 李金星 +2 位作者 杨江天 李清 丁凯 《南方电网技术》 CSCD 北大核心 2024年第11期97-105,共9页
为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征... 为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征选择以去除与光伏输出功率不相关的气象特征;其次,针对相似气象情况下光伏电站发电功率接近的实际情况,采用灰色关联分析(gray relation analysis,GRA)选取与预测日气象特征相似的日期作为训练集;然后,提出一种改进鲸鱼算法(improved whale algorithm,IWOA)来优化LSTM深度神经网络的超参数,使预测模型的均方根误差达到最小;最后,以澳洲Yulara沙漠3号光伏电站的光伏发电历史数据作为实验数据,用GRA-IWOALSTM神经网络模型进行预测。仿真结果表明,在不同的天气类型下与其他模型的预测效果相比,GRA-IWOA-LSTM模型的预测结果精度更高。 展开更多
关键词 相似日 光伏功率短期预测 灰色关联分析 改进鲸鱼优化算法 短期记忆神经网络
在线阅读 下载PDF
基于爬坡特征与改进PRAA的深远海风电功率短期预测研究
6
作者 黄冬梅 张佳慧 +2 位作者 时帅 宋巍 杜伟安 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第3期187-198,共12页
深远海海域情况复杂,海面风速极易受海洋中尺度事件影响。所造成的异常数据点和Bump事件将导致爬坡检测准确率下降,影响深远海风电功率短期预测精度。因此,提出了一种同时考虑爬坡事件以及深远海气象因素的深远海风电功率短期预测方法... 深远海海域情况复杂,海面风速极易受海洋中尺度事件影响。所造成的异常数据点和Bump事件将导致爬坡检测准确率下降,影响深远海风电功率短期预测精度。因此,提出了一种同时考虑爬坡事件以及深远海气象因素的深远海风电功率短期预测方法。首先,设计基于状态标记和滑动窗口改进的参数和分辨率自适应算法(parameter and resolution adaptive algorithm,PRAA)实现爬坡事件检测并完成特征量提取;其次,分析深远海风速、风向及温度等多因素关联关系,扩充深远海气象因素特征样本维度,并通过主成分分析法(principal component analysis,PCA)深度挖掘潜在特征;最后,基于某海上风电场的实测数据,采用考虑爬坡和深远海气象因素的轻量梯度提升机(light gradient boosting machine,LightGBM)算法完成深远海风电功率的短期预测,仿真结果验证了所提方法的有效性。 展开更多
关键词 深远海风电 风电功率爬坡事件 PRAA 爬坡特征量 风电功率短期预测
在线阅读 下载PDF
逆向云灰色关联相似日的EEMD-RL-GWO-LSTM区域风光功率短期预测 被引量:3
7
作者 张宇华 时鑫洋 +2 位作者 颜楠楠 王育飞 薛花 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期144-152,共9页
针对现有方法在风光预测时气象因素考虑不全面且未考虑风光功率关联性的问题,提出一种风光功率短期预测方法。首先,以云模型表征风光出力不确定性,逆向云结合灰色关联度分析不同气象特征对输出功率的影响程度,并设立选取标准及综合评分... 针对现有方法在风光预测时气象因素考虑不全面且未考虑风光功率关联性的问题,提出一种风光功率短期预测方法。首先,以云模型表征风光出力不确定性,逆向云结合灰色关联度分析不同气象特征对输出功率的影响程度,并设立选取标准及综合评分指标;其次,采用集合经验模态分解(EEMD)将选取相似日的功率数据分解为子序列;最后,将子序列和气象数据作为基于折射学习策略(RL)的灰狼算法(GWO)优化的改进长短期记忆网络(LSTM)模型的预测输入进行训练,对待预测日的子序列分别预测,并叠加得到短期区域风光发电功率的预测。以中国西北某风光联合电场数据为例,对该模型进行验证,结果表明,相比于现有预测模型,该文所提方法考虑了天气因素,具有较高的预测精度,能够较好地为区域风光联合电场的功率预测提供参考。 展开更多
关键词 逆向云灰色关联相似日 集合经验模态分解 RL-GWO-LSTM神经网络 短期风光功率预测
在线阅读 下载PDF
基于小波分析和集成学习的光伏输出功率短期预测 被引量:11
8
作者 孙永辉 范磊 +3 位作者 卫志农 李慧杰 Kwok W Cheung 孙国强 《电力系统及其自动化学报》 CSCD 北大核心 2016年第4期6-11,30,共7页
针对光伏输出功率的预测精度影响系统安全调度和稳定运行的问题,该文建立了基于小波分析和集成学习的光伏输出功率短期预测模型。考虑到光伏输出功率的波动性与随机性,引入小波分析将数据分解成趋势项和随机项,并分别对其建模。其中,趋... 针对光伏输出功率的预测精度影响系统安全调度和稳定运行的问题,该文建立了基于小波分析和集成学习的光伏输出功率短期预测模型。考虑到光伏输出功率的波动性与随机性,引入小波分析将数据分解成趋势项和随机项,并分别对其建模。其中,趋势项采用SVM算法,随机项采用BP算法进行预测处理;再考虑到随机项的非平稳性和BP算法的固有缺点,为提高预测精度,将集成学习引入随机项的预测模型。大量测试结果表明,基于小波分析和集成学习的短期预测模型的预测精度优于现有几种模型。 展开更多
关键词 小波分析 集成学习 BP神经网络 支持向量机 光伏输出功率短期预测
在线阅读 下载PDF
基于FKNN算法的风电功率短期预测 被引量:8
9
作者 郭晓利 张玉萍 +2 位作者 曲朝阳 任有学 辛鹏 《电测与仪表》 北大核心 2014年第15期1-7,共7页
风电场输出功率预测精度的提高能够极大的减轻风力发电对电网的冲击,提高风电并网的安全性和可靠性。针对KNN(K-Nearest Neighbor algorithm)算法存在的不足进行改进,提出了FKNN(Fast K-Nearest Neighbor algorithm)算法并将其应用到风... 风电场输出功率预测精度的提高能够极大的减轻风力发电对电网的冲击,提高风电并网的安全性和可靠性。针对KNN(K-Nearest Neighbor algorithm)算法存在的不足进行改进,提出了FKNN(Fast K-Nearest Neighbor algorithm)算法并将其应用到风电短期功率预测当中。首先,FKNN算法基于相似数据原理,针对每个预测样本,只需遍历一次训练样本集,得出K值最大时的相似历史样本优先级队列。然后,通过逐渐缩减优先级队列的长度,产生其他K值对应的相似样本优先级队列。其次,从产生的优先级队列中获取多数类样本,并应用其输出功率的平均值对预测样本的输出功率进行预测。最后,通过对吉林省某风电场的大量历史数据进行预测分析,充分证明该算法的简单性和实用性。 展开更多
关键词 风电功率短期预测 FKNN 算法 相似数据 K - MEANS 聚类算法
在线阅读 下载PDF
基于FCM和CG-DBN的光伏功率短期预测 被引量:9
10
作者 李正明 高赵亮 梁彩霞 《现代电力》 北大核心 2019年第5期62-67,共6页
针对光伏输出功率非线性、波动大、不稳定等特征引起光伏功率短期预测不精确的问题,本文提出了一种基于相似日聚类和利用共轭梯度法(CG)改进深度信念网络(DBN)的组合模型预测方法。首先利用FCM聚类算法将原始数据按照隶属度进行相似日聚... 针对光伏输出功率非线性、波动大、不稳定等特征引起光伏功率短期预测不精确的问题,本文提出了一种基于相似日聚类和利用共轭梯度法(CG)改进深度信念网络(DBN)的组合模型预测方法。首先利用FCM聚类算法将原始数据按照隶属度进行相似日聚类,随后根据类别进行CGDBN预测模型的建模,最后利用该模型进行光伏输出功率的短期预测。本文将方案应用于浙江龙游发电站,并将预测结果与传统预测模型进行了比较。最终得出,FCM和CG-DBN组合预测模型在光伏功率短期预测中的性能优于其他模型。 展开更多
关键词 相似日聚类 深度信念网络 光伏功率短期预测 组合预测模型 共轭梯度法
在线阅读 下载PDF
基于改进TLBO优化LSSVM的风电功率短期预测 被引量:3
11
作者 程亚丽 王致杰 +2 位作者 刘三明 江秀臣 盛戈皞 《电测与仪表》 北大核心 2019年第13期81-85,共5页
为提高风电功率短期预测的精度,提出一种基于改进TLBO优化LSSVM的风电功率短期预测方法。首先对基本TLBO算法中的‘教’阶段进行改进,在采用自适应教学因子的同时改变所有搜索个体的平均值,从而能够自适应的提高TLBO在整个搜索空间的性... 为提高风电功率短期预测的精度,提出一种基于改进TLBO优化LSSVM的风电功率短期预测方法。首先对基本TLBO算法中的‘教’阶段进行改进,在采用自适应教学因子的同时改变所有搜索个体的平均值,从而能够自适应的提高TLBO在整个搜索空间的性能;然后改进TLBO算法的‘学’阶段,为维持种群的多样性,避免TLBO算法过早收敛和陷入局部最优,在学习阶段引入高斯变异算子;最后用改进的TLBO优化构建的LSSVM预测模型。以上海北沿风电场和莱州风电场实测数据为例,仿真结果表明,与PSO和TLBO优化LSSVM相比,改进的TLBO优化LSSVM方法对短期风电功率预测具有更好的稳定性和更高的准确性。 展开更多
关键词 风电功率短期预测 改进TLBO LSSVM 自适应教学因子 高斯变异算子
在线阅读 下载PDF
基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测 被引量:44
12
作者 时珉 许可 +2 位作者 王珏 尹瑞 张沛 《电工技术学报》 EI CSCD 北大核心 2021年第11期2298-2305,共8页
准确预测光伏发电功率对电网调度具有十分重要的意义。该文提出一种基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测方法。首先,利用灰色关联分析对某地区多光伏电站进行空间相关性分析,选取与待预测光伏电站高度相关的周边电站;然... 准确预测光伏发电功率对电网调度具有十分重要的意义。该文提出一种基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测方法。首先,利用灰色关联分析对某地区多光伏电站进行空间相关性分析,选取与待预测光伏电站高度相关的周边电站;然后,基于GeoMAN模型动态提取待预测光伏电站的时空特征和外部气象因素,GeoMAN模型采用编解码结构,利用编码器动态提取待预测光伏电站的站内特征和与周边相关电站的站间空间特征,利用解码器提取输入变量的时间特性,并融合晴空指数和数值天气预报动态输出光伏发电预测功率;最后,采用实际光伏电站进行案例分析,结果表明该文所提出的预测方法与传统LSTM模型相比,实现了更高精度的光伏发电功率短期预测。 展开更多
关键词 光伏功率短期预测 灰色关联分析 GeoMAN模型 时空相关性 注意力机制
在线阅读 下载PDF
基于改进麻雀搜索算法的光伏功率短期预测 被引量:15
13
作者 李争 罗晓瑞 +3 位作者 张杰 曹欣 杜深慧 孙鹤旭 《太阳能学报》 EI CAS CSCD 北大核心 2023年第6期284-289,共6页
为提高光伏输出功率预测精度、保证电网的优化调度和稳定运行,提出一种改进麻雀搜索算法(SSA)的光伏输出功率预测模型。首先,对实验平台收集到的历史数据进行分析,得到关键气候影响因素;然后,用经验模态分解和主成分分析法对数据进行维... 为提高光伏输出功率预测精度、保证电网的优化调度和稳定运行,提出一种改进麻雀搜索算法(SSA)的光伏输出功率预测模型。首先,对实验平台收集到的历史数据进行分析,得到关键气候影响因素;然后,用经验模态分解和主成分分析法对数据进行维稳和降维处理;并建立改进麻雀搜索算法的BP神经网络预测模型;最后,进行实例验证。结果表明,该预测模型在敛散精度方面有所提升。 展开更多
关键词 经验模态分解 主成分分析 改进麻雀搜索算法 光伏输出功率短期预测
在线阅读 下载PDF
基于改进神经网络的光伏发电功率短期预测方法研究 被引量:25
14
作者 谭建斌 段春艳 班群 《可再生能源》 CAS 北大核心 2019年第8期1192-1197,共6页
针对光伏发电中因多种随机因素引起的输出功率不确定性问题,文章结合思维进化算法和BP神经网络算法建立了光伏发电功率的短期预测模型,模型的输入因子为大气温度、辐照度、风速和历史输出序列。根据季节变化采用4个预测单元对预测模型... 针对光伏发电中因多种随机因素引起的输出功率不确定性问题,文章结合思维进化算法和BP神经网络算法建立了光伏发电功率的短期预测模型,模型的输入因子为大气温度、辐照度、风速和历史输出序列。根据季节变化采用4个预测单元对预测模型进行训练和电站出力预测,并通过仿真对所提算法的有效性和准确性进行验证。结果表明,MEA-BP模型能有效降低BP网络模型的预测误差。 展开更多
关键词 光伏发电 短期功率预测 思维进化 BP神经网络
在线阅读 下载PDF
基于时间序列建模在风力发电功率短期预测中的研究 被引量:12
15
作者 田波 朴在林 王慧 《电网与清洁能源》 北大核心 2016年第3期115-119,126,共6页
为降低风力发电厂并网后对电网稳定性和波动性的影响,风力发电功率的特性分析和预测显得十分重要。论文针对影响风力发电功率的气象因素,引用主成分分析和逐步回归分析2种方法,明确了风速和最低温度与发电功率的因果关系。在进行发电功... 为降低风力发电厂并网后对电网稳定性和波动性的影响,风力发电功率的特性分析和预测显得十分重要。论文针对影响风力发电功率的气象因素,引用主成分分析和逐步回归分析2种方法,明确了风速和最低温度与发电功率的因果关系。在进行发电功率预测中以风速作为主因变量的条件,应用指数平滑模型、ARIMA模型、组合预测3种方法分别对风力发电功率进行了预测。组合预测是将前两种预测方法的优点进行组合,使预测结果的精确度得到进一步的提高。 展开更多
关键词 主成分分析 逐步回归分析 短期功率预测 指数平滑 ARIMA 组合预测
在线阅读 下载PDF
风电场发电功率短期预测组合模型研究 被引量:13
16
作者 牛晨光 游晓科 +1 位作者 赵震云 刘观起 《华北电力大学学报(自然科学版)》 CAS 北大核心 2012年第3期29-34,共6页
随着风电机组装机容量的持续高速增加以及大规模风电场的建设,各个国家(地区)的电网对风电的重视程度也在增加,风电场发电功率的短期预测对于风电场并网以及电网的调度起着至关重要的作用。提出基于相空间重构理论RBF神经网络功率预测模... 随着风电机组装机容量的持续高速增加以及大规模风电场的建设,各个国家(地区)的电网对风电的重视程度也在增加,风电场发电功率的短期预测对于风电场并网以及电网的调度起着至关重要的作用。提出基于相空间重构理论RBF神经网络功率预测模型,通过判断功率时间序列的混沌属性,还原其规律性,以达到提高预测准确度的要求;结合时间序列模型,建立了组合预测模型。通过对结果进行对比分析,显示组合模型可以得到较高的短期发电功率预测准确度,更好地满足实际现场需要。 展开更多
关键词 短期风电功率预测 神经网络 时间序列 组合预测
在线阅读 下载PDF
基于EEMD-GA-BP模型的风电功率短期预测研究 被引量:7
17
作者 朱恩文 朱安麒 +1 位作者 王洁丹 刘玉娇 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第1期166-174,共9页
随着我国风电产业迅速发展,风电并网规模不断扩大,准确预测风电场输出功率是降低风电波动对电网影响、提高电能质量、保证电网稳定运行的有效途径。本文采用箱型分析及热卡填充的方法对数据集中的异常数据进行清洗与重构。采用遗传算法... 随着我国风电产业迅速发展,风电并网规模不断扩大,准确预测风电场输出功率是降低风电波动对电网影响、提高电能质量、保证电网稳定运行的有效途径。本文采用箱型分析及热卡填充的方法对数据集中的异常数据进行清洗与重构。采用遗传算法与EEMD分解算法相结合的方式改进BP算法,并且根据不同时间尺度预测结果对比,相对于传统预测模型而言,本文EEMD-GA-BP模型具有预测精度高,预测效果更为稳定等特点。 展开更多
关键词 风电功率短期预测 反向传播神经网络 集成经验模态分解 遗传算法
在线阅读 下载PDF
基于GWO-EEMD-BP神经网络的光伏发电功率短期预测 被引量:27
18
作者 文爽 马逸骋 孙志强 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第12期4799-4808,共10页
为了实现复杂气象条件下光伏电站发电功率的准确预测以减少并网冲击,基于GWO算法耦合EEMD技术和BP神经网络算法构建复杂天气情形下光伏电站发电功率有效预测模型。引入EEMD技术降低极端天气下历史发电功率的波动性,利用GWO算法优化BP神... 为了实现复杂气象条件下光伏电站发电功率的准确预测以减少并网冲击,基于GWO算法耦合EEMD技术和BP神经网络算法构建复杂天气情形下光伏电站发电功率有效预测模型。引入EEMD技术降低极端天气下历史发电功率的波动性,利用GWO算法优化BP神经网络算法随机分布的权重和阈值以提升预测结果的精度,并利用所建立的GWO-EEMD-BP神经网络预测模型和传统的EEMD-BP神经网络预测模型对不同复杂气象条件下的光伏发电功率进行预测。研究结果表明:相较于传统的EEMD-BP预测模型,本文所建立的GWO-EEMD-BP神经网络预测模型通过阈值和权重优化及分解重组可有效提升不同复杂气象条件下预测结果精度。 展开更多
关键词 GWO算法 EEMD BP神经网络 光伏发电短期功率预测
在线阅读 下载PDF
基于VMD-GWO-ELMAN的光伏功率短期预测方法 被引量:28
19
作者 张娜 任强 +2 位作者 刘广忱 郭力萍 李静宇 《中国电力》 CSCD 北大核心 2022年第5期57-65,共9页
以进一步提高光伏输出功率短期预测的准确性和可靠性为目标,针对传统Elman神经网络权值和阈值盲目随机的缺点以及光伏输出功率信号波动性和非平稳性的特点,提出一种基于变分模态分解(VMD)和灰狼优化算法(GWO)优化Elman神经网络的光伏输... 以进一步提高光伏输出功率短期预测的准确性和可靠性为目标,针对传统Elman神经网络权值和阈值盲目随机的缺点以及光伏输出功率信号波动性和非平稳性的特点,提出一种基于变分模态分解(VMD)和灰狼优化算法(GWO)优化Elman神经网络的光伏输出功率短期预测模型。首先,使用Kmeans算法对原始数据按天气类型进行聚类;然后,使用VMD对每一类型天气光伏输出功率数据进行分解,分别将各分解子序列输入经GWO优化的Elman神经网络进行光伏输出功率预测;最后,将各预测结果进行叠加。实例证明:该模型的预测精度有所提升。 展开更多
关键词 K-MEANS聚类 变分模态分解 灰狼优化算法 ELMAN神经网络 短期光伏功率预测
在线阅读 下载PDF
基于邻域KNN算法的风电功率短期预测模型 被引量:13
20
作者 朱念芳 林善明 《电测与仪表》 北大核心 2017年第16期20-24,共5页
区域电网的总体运行以及电网内电压的稳定性易受风电功率波动的影响,高精度的短期风电功率预测能够确保风电电力系统供电的稳定性和安全性。文章在KNN算法的基础上,提出了基于邻域密度的邻域KNN算法,应用于风电功率的短期预测。邻域KNN... 区域电网的总体运行以及电网内电压的稳定性易受风电功率波动的影响,高精度的短期风电功率预测能够确保风电电力系统供电的稳定性和安全性。文章在KNN算法的基础上,提出了基于邻域密度的邻域KNN算法,应用于风电功率的短期预测。邻域KNN算法,首先找出测试对象在一定邻域范围内的训练样本集,统计训练样本集在空间每个维度的密度分布;然后计算出K值,不同的时刻,K值是动态变化的;最后根据KNN算法规则,将测试对象归类。以常州某风电场为例,利用邻域KNN算法对其历史数据进行分析并作出预测,验证了该算法的准确性与有效性。 展开更多
关键词 邻域KNN算法 风力发电 短期功率预测
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部