为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励...为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励轨迹。然后建立了机械臂动力学模型物理可行性约束,基于迭代优化方法设计了两层循环网络对超冗余机械臂的惯性参数和关节摩擦模型进行辨识。最后,利用数据集训练BP神经网络,得到超冗余机械臂半参数动力学模型,并与多种算法进行了比较分析。实验结果表明:相较于传统的最小二乘算法和加权最小二乘算法,通过使用本文提出的辨识算法,关节辨识力矩残差均方根(Root Mean Square,RMS)之和分别提高了32.81%和23.76%,半参数动力学模型相比于全参数动力学模型力矩残差均方根之和提高了23.56%,辨识结果验证了辨识方法的有效性和优越性。展开更多
The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observe...The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observed at pH 6.0 with the biosorption capacity of 98.38 mg/g.Among Langmuir,Freundlich and Temkin isotherm models,the Freundlich and the Temkin isotherm fit well with the experimental data.Cd(Ⅱ) ions biosorption follows the pseudo-second-order kinetic model.The rate controlling mechanism study reveals that film diffusion is the rate-limiting step and intraparticle diffusion is also involved in biosorption.Thermodynamic parameters,such as Gibbs free energy(ΔG°),the enthalpy(ΔH°) and entropy(ΔS°) were calculated,and revealed that the biosorption process is spontaneous,exothermic and random.Furthermore,the immobilized MA can be regenerated using 0.1 mol/L HCl solutions.展开更多
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied...In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.展开更多
According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield mac...According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.展开更多
文摘为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励轨迹。然后建立了机械臂动力学模型物理可行性约束,基于迭代优化方法设计了两层循环网络对超冗余机械臂的惯性参数和关节摩擦模型进行辨识。最后,利用数据集训练BP神经网络,得到超冗余机械臂半参数动力学模型,并与多种算法进行了比较分析。实验结果表明:相较于传统的最小二乘算法和加权最小二乘算法,通过使用本文提出的辨识算法,关节辨识力矩残差均方根(Root Mean Square,RMS)之和分别提高了32.81%和23.76%,半参数动力学模型相比于全参数动力学模型力矩残差均方根之和提高了23.56%,辨识结果验证了辨识方法的有效性和优越性。
基金Project(41271332) supported by the National Natural Science Foundation of ChinaProject(11JJ2031) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2012SK2021) supported by the Science and Technology Planning Program of Hunan Province,ChinaProject(CX2012B138) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The Microcystis aeruginosa(MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(Ⅱ) ions from aqueous solution.The biosorption process is pH dependent,and the optimum biosorption was observed at pH 6.0 with the biosorption capacity of 98.38 mg/g.Among Langmuir,Freundlich and Temkin isotherm models,the Freundlich and the Temkin isotherm fit well with the experimental data.Cd(Ⅱ) ions biosorption follows the pseudo-second-order kinetic model.The rate controlling mechanism study reveals that film diffusion is the rate-limiting step and intraparticle diffusion is also involved in biosorption.Thermodynamic parameters,such as Gibbs free energy(ΔG°),the enthalpy(ΔH°) and entropy(ΔS°) were calculated,and revealed that the biosorption process is spontaneous,exothermic and random.Furthermore,the immobilized MA can be regenerated using 0.1 mol/L HCl solutions.
基金Projects(61203020,61403190)supported by the National Natural Science Foundation of ChinaProject(BK20141461)supported by the Jiangsu Province Natural Science Foundation,China
文摘In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.
基金Project(2007CB714006) supported by the National Basic Research Program of China
文摘According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.