期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融合教育心理学理论的分组教学优化算法 被引量:1
1
作者 闫恩奇 马良 刘勇 《计算机应用研究》 CSCD 北大核心 2022年第12期3694-3700,共7页
针对分组教学优化算法(group teaching optimization algorithm,GTOA)存在求解精度不高、易陷入局部最优的不足,提出了一种融入教育心理学理论的分组教学优化算法(educational psychology group teaching optimization algorithm,EPGTOA... 针对分组教学优化算法(group teaching optimization algorithm,GTOA)存在求解精度不高、易陷入局部最优的不足,提出了一种融入教育心理学理论的分组教学优化算法(educational psychology group teaching optimization algorithm,EPGTOA)。在杰出组学生的教学阶段融入支架式教学理论,在教学过程中帮助学生构建知识体系,更快地提高该组学生的学习能力,从而加强算法的局部搜索能力;在学生学习阶段融入建构主义发展观理论,学生逐渐形成自己独特的认知结构,吸收教师传授的知识,提高学习能力,从而增强算法的全局搜索能力。为验证EPGTOA的有效性,选取21个标准测试函数,将EPGTOA与GTOA和基于信息共享的分组教学优化算法、灰狼算法、蜉蝣算法、飞蛾扑火算法、教与学算法算法进行仿真实验,同时采用Wilcoxon检验和平均绝对误差对改进算法所得的数据进行统计分析,结果表明在5%的水平上是显著的。在算法稳定性、求解精度和收敛速度上,EPGTOA都比GTOA有所增强,尤其在求解高维问题上,改进算法有更好的性能。 展开更多
关键词 分组教学优化算法 支架式教学理论 建构主义发展观理论 优化
在线阅读 下载PDF
分组教学蚁群算法改进及其在机器人路径规划中应用 被引量:11
2
作者 蒲兴成 宋欣琳 《智能系统学报》 CSCD 北大核心 2022年第4期764-771,共8页
针对蚁群算法收敛速度慢、易陷入局部最优问题,提出一种基于分组教学优化改进蚁群算法。该算法从3个角度对蚁群算法进行改进。首先,利用分组教学优化算法改进蚁群算法适应度函数,提高算法全局求解能力。同时,引进一种新的回退策略,通过... 针对蚁群算法收敛速度慢、易陷入局部最优问题,提出一种基于分组教学优化改进蚁群算法。该算法从3个角度对蚁群算法进行改进。首先,利用分组教学优化算法改进蚁群算法适应度函数,提高算法全局求解能力。同时,引进一种新的回退策略,通过该策略处理U型障碍死锁问题,确保算法求解可行性。其次,采用一种新的动态信息素更新策略,滚动更新每轮迭代后路径信息素值,避免算法陷入局部最优。最后,引入路径简化算子,将冗余角简化为直线路径,缩短路径长度。仿真实验证明改进算法能有效提高移动机器人路径规划收敛速度和精度。 展开更多
关键词 改进蚁群算法 分组教学优化 路径规划 移动机器人 信息素更新 启发式函数 路径简化 回退策略
在线阅读 下载PDF
基于含权k-壳分解的分组教学虚拟网络映射算法 被引量:2
3
作者 庄雷 王盛开 +4 位作者 郭孟鸽 李文萃 陆继钊 刘文覃 徐泽汐 《郑州大学学报(理学版)》 CAS 北大核心 2023年第3期50-56,共7页
提出一种两阶段的基于含权k-壳分解的分组教学虚拟网络映射算法。该算法根据含权k-壳分解法对底层网络进行预处理,然后沿着节点间的最短路径映射链路,并结合分组教学优化模型的分组、教学、自学与互学的优化策略,实现节点和链路的协调映... 提出一种两阶段的基于含权k-壳分解的分组教学虚拟网络映射算法。该算法根据含权k-壳分解法对底层网络进行预处理,然后沿着节点间的最短路径映射链路,并结合分组教学优化模型的分组、教学、自学与互学的优化策略,实现节点和链路的协调映射,从而进一步提高解的质量。仿真结果表明,所提算法作为一种多目标的虚拟网络映射算法,能够有效减少链路开启量,提升虚拟网络请求接受率及长期收益成本比。 展开更多
关键词 虚拟网络映射 分组教学优化 含权k-壳分解 请求接受率 收益成本比
在线阅读 下载PDF
边缘协作环境下最小化完工时间任务调度方法 被引量:1
4
作者 张超 赵辉 +3 位作者 张智峰 王静 万波 王泉 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期114-127,共14页
由于用户地理位置分布不均可能导致边缘服务器负载不均衡,难以为用户提供满意的服务质量。此外,边缘服务器可用资源有限,一些大任务可能难以全部卸载到边缘服务器。针对以上问题,利用多个边缘服务器之间的协作,结合任务部分卸载方式,提... 由于用户地理位置分布不均可能导致边缘服务器负载不均衡,难以为用户提供满意的服务质量。此外,边缘服务器可用资源有限,一些大任务可能难以全部卸载到边缘服务器。针对以上问题,利用多个边缘服务器之间的协作,结合任务部分卸载方式,提出一种边缘协作环境下最小化完工时间的任务调度方法。首先,结合边缘水平协作和任务部分卸载技术,考虑多用户多边缘服务器场景下用户和边缘服务器的位置关系,以最小化任务完工时间为目标,建立任务部分卸载调度模型;其次,提出基于改进分组教学优化算法的任务调度算法,联合优化边缘服务器计算资源分配、用户-边缘服务器关联决策、任务卸载比例以及执行位置决策,以最小化任务完工时间为目标,实现边缘计算环境下任务的高效调度;最后,通过实验将提出的任务调度算法与其他算法在多个指标下进行对比。实验结果表明,所提方法能够有效降低任务完工时间。 展开更多
关键词 边缘协作 部分卸载 调度算法 分组教学优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部