期刊文献+

分组教学蚁群算法改进及其在机器人路径规划中应用 被引量:11

Improvement of ant colony algorithm in group teaching and its application in robot path planning
在线阅读 下载PDF
导出
摘要 针对蚁群算法收敛速度慢、易陷入局部最优问题,提出一种基于分组教学优化改进蚁群算法。该算法从3个角度对蚁群算法进行改进。首先,利用分组教学优化算法改进蚁群算法适应度函数,提高算法全局求解能力。同时,引进一种新的回退策略,通过该策略处理U型障碍死锁问题,确保算法求解可行性。其次,采用一种新的动态信息素更新策略,滚动更新每轮迭代后路径信息素值,避免算法陷入局部最优。最后,引入路径简化算子,将冗余角简化为直线路径,缩短路径长度。仿真实验证明改进算法能有效提高移动机器人路径规划收敛速度和精度。 To solve the problems of slow convergence speed and easily falling into local optimization,a novel improved ant colony algorithm is proposed based on a group teaching optimal algorithm(GTACO).The improved ant colony algorithm is optimized in three aspects.Firstly,the group teaching optimization algorithm is used to improve the fitness function of the ant colony algorithm to enhance the searching ability of global solutions.Simultaneously,a new fallback strategy is designed to deal with the U-shaped deadlock and ensure the feasibility of the solution.Secondly,a novel updating strategy for dynamic pheromones is adopted to avoid falling into local optimization of the algorithm by updating the path pheromone value after each iteration.Finally,the simplification operator of the path is applied to shorten the length of the path by simplifying the redundant corners into linear paths.Simulation experiments show that the improved algorithm can effectively increase the ability of path planning in convergence speed and accuracy for mobile robots.
作者 蒲兴成 宋欣琳 PU Xingcheng;SONG Xinlin(School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《智能系统学报》 CSCD 北大核心 2022年第4期764-771,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61876200) 重庆市科委项目(cstc2018jcyjyAX0112) 重庆市教委科研项目(J2014032).
关键词 改进蚁群算法 分组教学优化 路径规划 移动机器人 信息素更新 启发式函数 路径简化 回退策略 improved ant colony algorithm group teaching optimization path planning mobile robot pheromone update heuristic function path simplification regression strategy
作者简介 通信作者:蒲兴成,教授,博士,博士生导师,主要研究方向为多智能体系统、群智能算法和随机系统。主持和参与市级以上科研项目10余项。发表学术论文50余篇,出版学术专著和教材各2部。E-mail:puxc@cqupt.edu.cn;宋欣琳,硕士研究生,主要研究方向为群智能算法的改进及应用。
  • 相关文献

参考文献5

二级参考文献50

共引文献91

同被引文献144

引证文献11

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部