The current study aims to evaluate the dynamic response of stabilized cohesive soil using an enzymatic preparation in terms of resilient modulus.We ran a series of resilient modulus testing according to AASHTO T307 on...The current study aims to evaluate the dynamic response of stabilized cohesive soil using an enzymatic preparation in terms of resilient modulus.We ran a series of resilient modulus testing according to AASHTO T307 on three types of cohesive soil treated with an enzymatic preparation to investigate its potential on roads construction.The results show significant improvement in the resilient modulus values,estimated at 1.4 to 4.4 times that observed for the untreated soil.Because of the complexity in conducting the resilient modulus measurement,we did a regression analysis to produce reliable correlation formula to predict the resilient modulus for untreated and stabilised soil samples involving stress state.The resilient modulus values for the subgrade materials at the anticipated field stresses were determined using a universal model.The enzymatic preparation was applied in pavement of a sample road and evaluated using the plate load test.SEM analysis for soil samples shows improvement in the soil compaction via reduction of voids between soil particles.XRD analysis shows no major structural changes in the treated soils.The enzymatic preparation contains 43 mg/mL of proteins.We used the SDS-PAGE(sodium dodecyl sulphate polyacrylamide gel electrophoresis)technique to identify the main protein components;however,the presence of interfering materials(surfactants)hinders the separation.展开更多
In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio ...In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The "positive" and "negative" cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.展开更多
A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The st...A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The stiffness matrix of the beam element was derived from the constitutive equations of each layer and the relationship between the strain distribution and the node displacement of the beam element. The specific damping capacity of the beam element was analyzed according to the strain distribution of the beam element and the strain energy dissipation caused by vibration in each direction of each layer; and the damping coefficients were obtained according to the principle that the total energy dissipation of the beam element was equal to the work done by the equivalent damping force during a cycle of vibration, from which the damping matrix of the dynamic equations was obtained. Using the finite element method, the dynamic analytic model of the mechanism was obtained. The dynamic responses and natural frequency of the mechanism were obtained by simulation, respectively, and those of the simulation obtained by the proposed model were analyzed and compared with the results obtained by the conventional model. The work provides theoretical basis to a certain extent for the further research on nonlinear vibration characteristics and optimum design of this kind of mechanism.展开更多
A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were establish...A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.展开更多
基金Project supported by the Academy of Scientific Research and Technology,ASRT,Cairo,Egypt
文摘The current study aims to evaluate the dynamic response of stabilized cohesive soil using an enzymatic preparation in terms of resilient modulus.We ran a series of resilient modulus testing according to AASHTO T307 on three types of cohesive soil treated with an enzymatic preparation to investigate its potential on roads construction.The results show significant improvement in the resilient modulus values,estimated at 1.4 to 4.4 times that observed for the untreated soil.Because of the complexity in conducting the resilient modulus measurement,we did a regression analysis to produce reliable correlation formula to predict the resilient modulus for untreated and stabilised soil samples involving stress state.The resilient modulus values for the subgrade materials at the anticipated field stresses were determined using a universal model.The enzymatic preparation was applied in pavement of a sample road and evaluated using the plate load test.SEM analysis for soil samples shows improvement in the soil compaction via reduction of voids between soil particles.XRD analysis shows no major structural changes in the treated soils.The enzymatic preparation contains 43 mg/mL of proteins.We used the SDS-PAGE(sodium dodecyl sulphate polyacrylamide gel electrophoresis)technique to identify the main protein components;however,the presence of interfering materials(surfactants)hinders the separation.
基金Project(51405520)supported by the National Natural Science Foundation of ChinaProject(2012CB619505)supported by National Basic Research Program of China
文摘In order to study the distribution of equivalent and shear strain of aluminum alloy plate during snake hot rolling, several coupled thermo-mechanical finite element models(FEM) are established. Effects of speed ratio and offset distance on strain distribution of the plate are analyzed. The length of cross shear zone is defined to have a better understanding of the deformation characteristic in cross shear zone, which is the essential difference from symmetrical rolling in deformation zone. The results show that the equivalent strain and shear strain of lower part both increase with the increase of speed ratio, while the upper part decreases; the equivalent strain through the whole thickness decreases with ascending offset distance, while the shear strain of lower part increases. The length of cross shear zone quickly increases with ascending speed ratio and slightly decreases with ascending offset distance. The "positive" and "negative" cross shear zones are formed with the increase of speed ratio and offset distance, respectively. The value of the sensitivity coefficient of speed ratio is an order of magnitude bigger than the offset distance. However, the shear strain at center point increases with the ascending speed ratio and offset distance for different mechanism. As speed ratio increases, the asymmetry of the distribution of equivalent is becoming larger and the shear strain is generated in the same direction in cross shear zone. The FEM results agree well with experimental results.
基金Projects(50175031, 50565001) supported by the National Natural Science Foundation of China project (2003203) supported by the New Century Ten Hundred and Thousand Talent Project Special Foundation of Guangxi+1 种基金 project(0542005) supported by Guangxi Science Foundation project(205119) supported by the Key Project of Chinese Ministry of Education
文摘A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The stiffness matrix of the beam element was derived from the constitutive equations of each layer and the relationship between the strain distribution and the node displacement of the beam element. The specific damping capacity of the beam element was analyzed according to the strain distribution of the beam element and the strain energy dissipation caused by vibration in each direction of each layer; and the damping coefficients were obtained according to the principle that the total energy dissipation of the beam element was equal to the work done by the equivalent damping force during a cycle of vibration, from which the damping matrix of the dynamic equations was obtained. Using the finite element method, the dynamic analytic model of the mechanism was obtained. The dynamic responses and natural frequency of the mechanism were obtained by simulation, respectively, and those of the simulation obtained by the proposed model were analyzed and compared with the results obtained by the conventional model. The work provides theoretical basis to a certain extent for the further research on nonlinear vibration characteristics and optimum design of this kind of mechanism.
基金Project(51178333)supported by the National Natural Science Foundation of ChinaProject(SLDRCE09-D-03)supported by the Ministry of Science and Technology of China
文摘A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.