期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
球对称域上Caputo-Hadamard分数阶扩散方程源项反演问题
1
作者 张晨雨 杨帆 《兰州理工大学学报》 北大核心 2025年第5期154-162,共9页
研究了球对称域上Caputo-Hadamard分数阶扩散方程源项反演问题.应用Laplace变换和Laplace逆变换得到了问题的精确解.对精确解进行分析,发现问题是不适定的.在此基础上,采用拟边界正则化方法解决解的稳定性问题,并分别给出了在先验正则... 研究了球对称域上Caputo-Hadamard分数阶扩散方程源项反演问题.应用Laplace变换和Laplace逆变换得到了问题的精确解.对精确解进行分析,发现问题是不适定的.在此基础上,采用拟边界正则化方法解决解的稳定性问题,并分别给出了在先验正则化参数选择规则和后验正则化参数选择规则下的两个收敛误差估计.采用有限差分离散得到迭代格式,通过数值算例说明了该正则化方法的有效性和稳定性. 展开更多
关键词 反问题 Caputo-Hadamard分数阶扩散方程 球对称域 识别未知源 拟边界正则化方法
在线阅读 下载PDF
基于时间分数阶扩散方程的药物控释初始浓度优化 被引量:1
2
作者 张新明 黎潇 黄何 《工程数学学报》 CSCD 北大核心 2024年第5期867-881,共15页
药物控释系统是指通过调控内部某些设计参数,以达到特定药物释放目标的一种可控释体系。针对基于时间分数阶扩散方程的药物控释体系初始浓度优化问题,采用B样条小波方法求解正问题,采用结合了小生境策略和布谷鸟搜索算法的小生境布谷鸟... 药物控释系统是指通过调控内部某些设计参数,以达到特定药物释放目标的一种可控释体系。针对基于时间分数阶扩散方程的药物控释体系初始浓度优化问题,采用B样条小波方法求解正问题,采用结合了小生境策略和布谷鸟搜索算法的小生境布谷鸟算法优化不同分数阶下的药物初始浓度,从而近似达到三种预期药物释放目标。对于正问题求解,主要结合Caputo导数和三次B样条尺度函数,建立了一种B样条小波方法的迭代求解格式;对于初始浓度优化问题,引入了反问题研究思路,将药物控释体系的优化设计问题归结为基于分数阶扩散方程的参数辨识问题。为了实现参数反演控制,引入了小生境布谷鸟智能优化算法,反演计算控释体系中的初始浓度,有效地解决了布谷鸟算法易陷入局部极值的问题。针对恒速释放,线性降低释放和非线性释放三种释放目标,给出了最优控制参数设计,数值算例验证了所提方法的有效性。 展开更多
关键词 时间分数阶扩散方程 药物控释体系初始浓度优化 B样条小波方法 小生境布谷鸟算法
在线阅读 下载PDF
时变系数分数阶扩散方程初边值问题解的存在性
3
作者 余子成 何家维 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第5期1126-1137,共12页
为了研究系数依赖于时间变化参数的分数阶扩散方程的可解性,本文在分数阶扩散方程系数满足一致椭圆性条件与H lder正则性假设下,利用双线性形式技巧将该分数阶扩散方程抽象为非自治分数阶发展方程,基于分数阶积分理论、Mittag Leffler... 为了研究系数依赖于时间变化参数的分数阶扩散方程的可解性,本文在分数阶扩散方程系数满足一致椭圆性条件与H lder正则性假设下,利用双线性形式技巧将该分数阶扩散方程抽象为非自治分数阶发展方程,基于分数阶积分理论、Mittag Leffler函数、半群理论和不动点理论等抽象分析工具,证明了时变系数的分数阶扩散方程初边值问题解的存在性。 展开更多
关键词 分数阶扩散方程 非自治分数发展方程 存在性
在线阅读 下载PDF
基于L2-1_(σ)格式逼近时间分数阶扩散方程的差分方法及其收敛性分析
4
作者 姜楠楠 周晓军 《贵州师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期100-105,111,共7页
针对时间分数阶扩散方程,在时间方向上结合L2-1_(σ)格式,空间上采用二阶中心差分方法进行离散,并对离散格式进行了收敛性和稳定性分析,离散格式和分析方法可以很容易推广到空间高维情形。最后,通过数值算例对L2-1_(σ)格式和L1格式进... 针对时间分数阶扩散方程,在时间方向上结合L2-1_(σ)格式,空间上采用二阶中心差分方法进行离散,并对离散格式进行了收敛性和稳定性分析,离散格式和分析方法可以很容易推广到空间高维情形。最后,通过数值算例对L2-1_(σ)格式和L1格式进行了误差和收敛阶的对比,显示出L2-1_(σ)格式在时间分数阶导数逼近上的优势。 展开更多
关键词 时间分数阶扩散方程 收敛 差分格式
在线阅读 下载PDF
多项时间分数阶扩散方程类Wilson非协调元的超收敛分析 被引量:4
5
作者 王芬玲 张景丽 +2 位作者 樊明智 赵艳敏 史艳华 《应用数学》 CSCD 北大核心 2018年第1期79-88,共10页
基于L1离散格式,针对具有Caputo导数的二维多项时间分数阶扩散方程给出了类Wilson非协调有限元方法.首先证明其逼近格式的无条件稳定性.其次利用该单元的特殊性质和分数阶导数巧妙的处理技巧导出了超逼近结果,进一步地,借助插值后处理... 基于L1离散格式,针对具有Caputo导数的二维多项时间分数阶扩散方程给出了类Wilson非协调有限元方法.首先证明其逼近格式的无条件稳定性.其次利用该单元的特殊性质和分数阶导数巧妙的处理技巧导出了超逼近结果,进一步地,借助插值后处理技术导出了超收敛估计. 展开更多
关键词 多项时间分数阶扩散方程 类WILSON元 全离散格式 超逼近和超收敛
在线阅读 下载PDF
变分数阶扩散方程的新隐式差分法 被引量:3
6
作者 于春肖 苑润浩 +1 位作者 魏国勇 崔栋 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第1期12-18,共7页
针对变分数阶扩散方程,提出新隐式差分法.首先,对二阶空间导数和Riemann-Liouville型变时间分数阶导数算子进行离散化处理,将变分数阶扩散方程转化为代数方程组求解;然后,借助Fourier级数技术给出了新隐式差分法的收敛性分析;最后,通过... 针对变分数阶扩散方程,提出新隐式差分法.首先,对二阶空间导数和Riemann-Liouville型变时间分数阶导数算子进行离散化处理,将变分数阶扩散方程转化为代数方程组求解;然后,借助Fourier级数技术给出了新隐式差分法的收敛性分析;最后,通过数值算例检验该方法,计算结果表明了新隐式差分法的可行性和有效性. 展开更多
关键词 分数阶扩散方程 新隐式差分法 变时间分数导数算子 收敛性分析
在线阅读 下载PDF
时间分数阶扩散方程线性三角形元的高精度分析 被引量:2
7
作者 史艳华 张亚东 +2 位作者 王芬玲 赵艳敏 王萍莉 《数学物理学报(A辑)》 CSCD 北大核心 2019年第4期839-850,共12页
该文基于线性三角形元和改进的L1格式,对具有α阶Caputo导数的时间分数阶扩散方程建立了一个全离散逼近格式.首先,证明了该格式的无条件稳定性.其次,利用该单元及Ritz投影算子的性质,导出了关于投影算子具有O(h^2+τ^2-α)阶的超逼近性... 该文基于线性三角形元和改进的L1格式,对具有α阶Caputo导数的时间分数阶扩散方程建立了一个全离散逼近格式.首先,证明了该格式的无条件稳定性.其次,利用该单元及Ritz投影算子的性质,导出了关于投影算子具有O(h^2+τ^2-α)阶的超逼近性质.再结合插值算子和投影算子的关系,进一步导出了关于插值算子具有O(h^2+τ^2-α)阶的超逼近性质.然后,借助插值后处理技术得到了整体超收敛估计.最后,利用数值算例验证了理论分析的正确性. 展开更多
关键词 时间分数阶扩散方程 线性三角形元 全离散格式 无条件稳定 超逼近和超收敛
在线阅读 下载PDF
空间分数阶扩散方程的超线性收敛离散格式 被引量:5
8
作者 章红梅 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期464-468,共5页
考虑了空间分数阶扩散方程的数值解,构造了一个隐式差分离散格式,证明了此格式是无条件稳定的,且关于空间步长是超线性收敛的.最后,给出一个数值例子说明本文的理论分析是正确的,所构造的离散格式是有效的.
关键词 空间分数阶扩散方程 CAPUTO导数 Riemann-Liouville分数导数 积分
在线阅读 下载PDF
时间分数阶扩散方程的并行高效Legendre谱方法 被引量:3
9
作者 陈红斌 马甲迎 刘晓奇 《中南林业科技大学学报》 CAS CSCD 北大核心 2011年第1期148-152,共5页
研究了两类时间分数阶扩散方程的并行高效Legendre谱方法,分数阶导数分别代替标准的扩散方程的二阶空间导数和一阶时间导数。空间方向采用高效的Legendre谱方法,时间方向使用了基于Fourier级数展开的Laplace数值逆,并对其参数进行了优... 研究了两类时间分数阶扩散方程的并行高效Legendre谱方法,分数阶导数分别代替标准的扩散方程的二阶空间导数和一阶时间导数。空间方向采用高效的Legendre谱方法,时间方向使用了基于Fourier级数展开的Laplace数值逆,并对其参数进行了优化。给出了两类时间分数阶扩散程的数值格式和数值例子,与其他方法比,该方法数值结果更优。 展开更多
关键词 时间分数阶扩散方程 LEGENDRE谱方法 Fourier级数展开 Laplace数值逆 参数优化 数值例子
在线阅读 下载PDF
分数阶扩散方程半无界混合问题的解 被引量:7
10
作者 段俊生 徐明瑜 《高校应用数学学报(A辑)》 CSCD 北大核心 2003年第3期259-266,共8页
研究了一维半无界分数阶扩散方程具有第三类非齐次边条件的混合问题.分别给出具有第三类齐次边条件的混合问题基本解以及具有零初始条件的混合问题基本解.最后得到分数阶扩散方程半无界混合问题的求解公式.
关键词 分数积分 Fox函数 分数阶扩散方程 广义Mittag—Leffler函数
在线阅读 下载PDF
空间分数阶扩散方程的Multiquadric拟插值解法 被引量:4
11
作者 王自强 曹俊英 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期358-363,共6页
基于拟插值算子对空间分数阶扩散方程构造了一个新的数值格式.首先在散落点上用三次Multiquadric(MQ)函数的平移构造了一个拟插值算子,分析了此拟插值算子的再生性、保形性和对分数阶导数的收敛性,最后利用上述拟插值算子并结合时间差... 基于拟插值算子对空间分数阶扩散方程构造了一个新的数值格式.首先在散落点上用三次Multiquadric(MQ)函数的平移构造了一个拟插值算子,分析了此拟插值算子的再生性、保形性和对分数阶导数的收敛性,最后利用上述拟插值算子并结合时间差分格式构造了空间分数阶扩散方程的计算格式.收敛性分析显示:当时间方向用Crank-Nicolson格式时,精度为O(Δt2+h4-α),当时间方向用向后Euler格式时,精度为O(Δt+h4-α),其中Δt为时间步长,h为空间步长.数值结果表明MQ拟插值方法是构造数值格式的一个有效工具. 展开更多
关键词 Multiquadric拟插值 分数阶扩散方程 保形性 逼近性分析
在线阅读 下载PDF
带周期边界条件时间分数阶扩散方程逆时反问题的条件稳定性 被引量:3
12
作者 阮周生 张文 王泽文 《河北大学学报(自然科学版)》 CAS 北大核心 2015年第6期561-565,638,共6页
基于伴随思想,利用分离变量方法研究了一类带周期边界条件时间分数阶扩散方程,首先在弱解意义下推得了正问题解的正则性,然后基于对初值的光滑性假设推得了逆时反问题条件稳定性结论.
关键词 时间分数阶扩散方程 逆时反问题 条件稳定性
在线阅读 下载PDF
两边空间-时间分数阶扩散方程的加权有限差分格式(英文) 被引量:4
13
作者 马维元 刘华 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期41-48,70,共9页
对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式.利用能量估计,得到了差分格式的稳定性.然后使用数学归纳法证明了在相同的条件下,所提出的的格式是收敛的.最后通过一个例子说明了所提出的格式是可靠的、有效的.
关键词 分数阶扩散方程 空间-时间分数导数 加权差分格式 收敛性 稳定性
在线阅读 下载PDF
一类n维空间Riesz分数阶扩散方程的解析解 被引量:4
14
作者 马亮亮 刘冬兵 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期506-509,共4页
文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界... 文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界区域上满足一定初边值条件的基本解。 展开更多
关键词 Riesz分数导数 空间分数阶扩散方程 Riemann-Liouville分数导数 解析解
在线阅读 下载PDF
空间分数阶扩散方程的隐式高精度方法 被引量:3
15
作者 蔡新 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期317-321,共5页
在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二阶精度的隐式方法,这个方法基于古典的C... 在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二阶精度的隐式方法,这个方法基于古典的Crank-Nicholson方法与空间外推方法,该隐式方法是无条件稳定和收敛的.最后给出一些数值例子来证实格式是高阶收敛的,此技巧可应用于解其它分数阶微分方程. 展开更多
关键词 空间分数阶扩散方程 隐式方法 精度 稳定性 收敛性
在线阅读 下载PDF
分数阶扩散方程参数反演的改进花朵授粉算法 被引量:3
16
作者 张新明 袁笛 关晨辰 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2018年第10期151-161,共11页
为解决传统花朵授粉算法容易受到局部极值影响的问题,将共享机制的小生境策略与花朵授粉算法相结合,提出了一种新的小生境花朵授粉算法,并将之应用于空间分数阶扩散方程的参数反演研究,以期为污染物寻源和空气污染防治提供一定的理论依... 为解决传统花朵授粉算法容易受到局部极值影响的问题,将共享机制的小生境策略与花朵授粉算法相结合,提出了一种新的小生境花朵授粉算法,并将之应用于空间分数阶扩散方程的参数反演研究,以期为污染物寻源和空气污染防治提供一定的理论依据.为确保算法的寻优能力及寻优精度,首先,选取20个多模态函数,将算法改进前后的寻优性能进行对比,以验证改进算法的性能;然后,针对污染寻源问题,基于相应的空间分数阶反常扩散方程模型,运用隐式差分格式求解正问题,并采用花朵授粉算法和改进算法反演源项和扩散系数;最后,针对所提出的算法,从种群数、转换概率和搜索区间方面进行了灵敏度分析,并进一步讨论了算法的抗噪性.数值算例结果表明,对于空间分数阶反常扩散方程参数反演问题,改进后的花朵授粉算法反演效果更好,数值精度更高,可以达到理想水平. 展开更多
关键词 空间分数阶扩散方程 隐式差分格式 参数反演 花朵授粉算法 小生境策略
在线阅读 下载PDF
时间分数阶扩散方程的一种交替分带并行差分方法 被引量:2
17
作者 杨晓忠 吴立飞 《工程数学学报》 CSCD 北大核心 2019年第5期535-550,共16页
分数阶反常扩散方程具有深刻的物理背景和丰富的理论内涵,其数值解法的研究具有重要的科学意义和工程应用价值.针对二维时间分数阶反常扩散方程,本文研究一种交替分带 Crank-Nicolson差分的并行计算方法(ABdC-N方法).该格式是在交替分... 分数阶反常扩散方程具有深刻的物理背景和丰富的理论内涵,其数值解法的研究具有重要的科学意义和工程应用价值.针对二维时间分数阶反常扩散方程,本文研究一种交替分带 Crank-Nicolson差分的并行计算方法(ABdC-N方法).该格式是在交替分带技术的基础上,结合经典显式、隐式和 Crank-Nicolson差分格式构造而成.理论分析和数值试验表明,ABdC-N方法是无条件稳定和收敛的,具有良好的计算精度和并行计算性质,并且计算效率远优于经典的串行差分方法,证实本文 ABdC-N差分方法求解二维时间分数阶反常扩散方程是有效的. 展开更多
关键词 二维时间分数阶扩散方程 交替分带 CRANK-NICOLSON 差分格式 稳定性 并行计算 数值实验
在线阅读 下载PDF
一种时间分数阶扩散方程初边值问题的隐式有限差分格式 被引量:4
18
作者 陈春华 卢旋珠 《东华理工学院学报》 CAS 2006年第3期289-293,共5页
通过Caputo型与G runwald型的分数阶导数的转化关系以及利用G runwald型的标准数值近似公式对Caputo型分数阶导数进行离散,可构建时间分数阶扩散方程初边值问题的隐式有限差分格式。此差分格式是无条件稳定和无条件收敛的。
关键词 时间分数阶扩散方程 差分格式 稳定性 收敛性
在线阅读 下载PDF
时间-空间分数阶扩散方程 被引量:1
19
作者 朱波 韩宝燕 《江南大学学报(自然科学版)》 CAS 2010年第6期750-752,共3页
讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函... 讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函数,并用Green函数得到有源时间-空间分数阶扩散方程Cauchy问题的解。 展开更多
关键词 时间-空间分数阶扩散方程 FOURIER变换 LAPLACE变换 GREEN函数 Mittag-Leffler函数
在线阅读 下载PDF
半线性分数阶扩散方程的时空有限元方法:间断Galerkin方法(英文) 被引量:2
20
作者 刘金存 李宏 《应用数学》 CSCD 北大核心 2013年第4期853-862,共10页
本文研究半线性分数阶扩散问题的Galerkin时空有限元方法,该方法在空间连续,而在时间上间断.将有限元与有限差分方法相结合,充分利用拉格朗日插值多项式在Radau点处的特性,给出弱解的存在唯一性证明,且不需对时空网格施加任何限制.通过... 本文研究半线性分数阶扩散问题的Galerkin时空有限元方法,该方法在空间连续,而在时间上间断.将有限元与有限差分方法相结合,充分利用拉格朗日插值多项式在Radau点处的特性,给出弱解的存在唯一性证明,且不需对时空网格施加任何限制.通过引入椭圆投影算子,详细导出了最优阶L∞(L2)模误差估计. 展开更多
关键词 分数阶扩散方程 间断GALERKIN方法 存在唯一性 误差估计
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部