在激光无线能量传输中,由于瞄准系统误差和物体遮挡的影响,光电池阵列接收到的激光辐照分布不均匀,导致光电池阵列组串内的电池间出现电流失配,输出功率下降。针对该问题,采用分布式最大功率点追踪(Distributed Maximum Power Point Tra...在激光无线能量传输中,由于瞄准系统误差和物体遮挡的影响,光电池阵列接收到的激光辐照分布不均匀,导致光电池阵列组串内的电池间出现电流失配,输出功率下降。针对该问题,采用分布式最大功率点追踪(Distributed Maximum Power Point Tracking,DMPPT)技术,减少光电池阵列组串内的电池间电流失配,并用并联型Boost(PT-Boost)电路替代传统Boost电路,降低DC/DC转换器的输入电流纹波,使DMPPT系统获得高追踪效率。实验结果表明,相较于传统Boost电路,PT-Boost电路的追踪效率提高3.6%,达到93.5%。在上述研究的基础上,设置了遮光率分别为0%、25%和50%的激光无线能量传输场景,DMPPT系统整体效率分别达到了93%、92.6%和90.3%。该研究结果对激光辐照不均匀场景下激光无线能量传输的最大功率点追踪指导意义。展开更多
近年来,越来越多基于光伏(photovoltaic,PV)面板级直流优化器(DCoptimizer,DCO)的分布式最大功率点跟踪(distributed maximum power point tracking,DMPPT)技术被提出用于解决局部阴影或不匹配问题。DMPPT的研究依赖于高精度、高效率的...近年来,越来越多基于光伏(photovoltaic,PV)面板级直流优化器(DCoptimizer,DCO)的分布式最大功率点跟踪(distributed maximum power point tracking,DMPPT)技术被提出用于解决局部阴影或不匹配问题。DMPPT的研究依赖于高精度、高效率的分布式光伏并网系统动态仿真模型。而通常此类光伏电站模型包含上千的DCO,将导致仿真过程中计算量过大的问题。针对此类建模问题,提出了一种基于矩阵变量的含大规模DCO的分布式光伏并网系统建模方法。该方法可结合Matlab/Simulink矢量仿真的功能实现,所建模型是一个系统规模可任意配置的平均值模型,其优点是采用模块化设计方法,具有良好的可扩展性。此外,该模型还可以利用Simulink的线性化工具箱直接得到其线性化结果,避免了大规模系统稳定性分析中人工线性化计算的复杂性。通过小规模DMPPT光伏系统电磁暂态模型与平均值模型的仿真结果对比,以及大规模系统线性化计算结果与时域仿真的对比,验证了所提建模方法的正确性和有效性。展开更多
文摘在激光无线能量传输中,由于瞄准系统误差和物体遮挡的影响,光电池阵列接收到的激光辐照分布不均匀,导致光电池阵列组串内的电池间出现电流失配,输出功率下降。针对该问题,采用分布式最大功率点追踪(Distributed Maximum Power Point Tracking,DMPPT)技术,减少光电池阵列组串内的电池间电流失配,并用并联型Boost(PT-Boost)电路替代传统Boost电路,降低DC/DC转换器的输入电流纹波,使DMPPT系统获得高追踪效率。实验结果表明,相较于传统Boost电路,PT-Boost电路的追踪效率提高3.6%,达到93.5%。在上述研究的基础上,设置了遮光率分别为0%、25%和50%的激光无线能量传输场景,DMPPT系统整体效率分别达到了93%、92.6%和90.3%。该研究结果对激光辐照不均匀场景下激光无线能量传输的最大功率点追踪指导意义。
文摘近年来,越来越多基于光伏(photovoltaic,PV)面板级直流优化器(DCoptimizer,DCO)的分布式最大功率点跟踪(distributed maximum power point tracking,DMPPT)技术被提出用于解决局部阴影或不匹配问题。DMPPT的研究依赖于高精度、高效率的分布式光伏并网系统动态仿真模型。而通常此类光伏电站模型包含上千的DCO,将导致仿真过程中计算量过大的问题。针对此类建模问题,提出了一种基于矩阵变量的含大规模DCO的分布式光伏并网系统建模方法。该方法可结合Matlab/Simulink矢量仿真的功能实现,所建模型是一个系统规模可任意配置的平均值模型,其优点是采用模块化设计方法,具有良好的可扩展性。此外,该模型还可以利用Simulink的线性化工具箱直接得到其线性化结果,避免了大规模系统稳定性分析中人工线性化计算的复杂性。通过小规模DMPPT光伏系统电磁暂态模型与平均值模型的仿真结果对比,以及大规模系统线性化计算结果与时域仿真的对比,验证了所提建模方法的正确性和有效性。