研究了基于神经动态优化的综合能源系统(Integrated energy systems,IES)分布式多目标优化调度问题.首先,将IES元件单元(包含负荷)作为独立的决策主体,联合考量其运行成本和排放成本,并计及多能源设备间的传输损耗,提出了IES多目标优化...研究了基于神经动态优化的综合能源系统(Integrated energy systems,IES)分布式多目标优化调度问题.首先,将IES元件单元(包含负荷)作为独立的决策主体,联合考量其运行成本和排放成本,并计及多能源设备间的传输损耗,提出了IES多目标优化调度模型,该模型可描述为一类非凸多目标优化问题.其次,针对此类问题的求解,提出了一种基于神经动力学系统的分布式多目标优化算法,该算法基于动态权重的神经网络模型,可以解决不可分离的不等式约束问题.该算法计算负担小,收敛速度快,并且易于硬件实现.仿真结果表明,所提算法能同时协调综合能源系统的经济性和环境性这两个冲突的目标,且获得了整个帕累托前沿,有效降低了综合能源系统的污染物排放量和综合运行成本.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
文摘研究了基于神经动态优化的综合能源系统(Integrated energy systems,IES)分布式多目标优化调度问题.首先,将IES元件单元(包含负荷)作为独立的决策主体,联合考量其运行成本和排放成本,并计及多能源设备间的传输损耗,提出了IES多目标优化调度模型,该模型可描述为一类非凸多目标优化问题.其次,针对此类问题的求解,提出了一种基于神经动力学系统的分布式多目标优化算法,该算法基于动态权重的神经网络模型,可以解决不可分离的不等式约束问题.该算法计算负担小,收敛速度快,并且易于硬件实现.仿真结果表明,所提算法能同时协调综合能源系统的经济性和环境性这两个冲突的目标,且获得了整个帕累托前沿,有效降低了综合能源系统的污染物排放量和综合运行成本.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.