提出了函数挖掘成功率、弱相关和函数一致性合并的概念,在此基础上给出了基于网格的GEP函数挖掘算法(GEPFM-grid,gene expression programming function mining based upon grid)。通过比较实验表明,GEPFM-grid的函数挖掘成功率和收敛...提出了函数挖掘成功率、弱相关和函数一致性合并的概念,在此基础上给出了基于网格的GEP函数挖掘算法(GEPFM-grid,gene expression programming function mining based upon grid)。通过比较实验表明,GEPFM-grid的函数挖掘成功率和收敛速度比传统算法有着明显的提升且耗时较少。展开更多
传统GEP(Gene Expression Programm ing)算法存在局部收敛方面的缺陷,为了解决这一问题,提出了可以使进化快速跳出局部最优的VPS-GEP(Various Popu lation Strategy GEP)算法,证明了在概率意义上GEP平均每代进化所耗时间与群体规模成正...传统GEP(Gene Expression Programm ing)算法存在局部收敛方面的缺陷,为了解决这一问题,提出了可以使进化快速跳出局部最优的VPS-GEP(Various Popu lation Strategy GEP)算法,证明了在概率意义上GEP平均每代进化所耗时间与群体规模成正比,用两个标准测试函数和一个标准测试数据集测试了VPS-GEP算法的函数挖掘能力和效率。实验表明,VPS-GEP算法可以减少进化停滞代数55%以上。展开更多
针对传统GEP(Gene Expression Programming)算法的未成熟收敛以及陷入局部最优问题,提出一种基于多样化进化策略的基因表达式编程算法(DS-GEP:Gene Expression Programming based on diversified develop-ment strategy)。该算法通过基...针对传统GEP(Gene Expression Programming)算法的未成熟收敛以及陷入局部最优问题,提出一种基于多样化进化策略的基因表达式编程算法(DS-GEP:Gene Expression Programming based on diversified develop-ment strategy)。该算法通过基因空间均匀分布策略,自适应地交叉和变异算子以及淘汰算子等方法,对种群给予不同的进化策略,以保持种群的多样性,从而增强算法的寻优能力。通过对函数挖掘的实验证明,多样化进化策略各个部分均对改善挖掘效率发挥了作用,提高了DS-GEP函数挖掘算法的成功率。与传统GEP算法相比较,该算法的平均成功进化代数缩短了11%,成功进化时间缩短了8%,进化成功率提高了20%。展开更多
文摘提出了函数挖掘成功率、弱相关和函数一致性合并的概念,在此基础上给出了基于网格的GEP函数挖掘算法(GEPFM-grid,gene expression programming function mining based upon grid)。通过比较实验表明,GEPFM-grid的函数挖掘成功率和收敛速度比传统算法有着明显的提升且耗时较少。
文摘传统GEP(Gene Expression Programm ing)算法存在局部收敛方面的缺陷,为了解决这一问题,提出了可以使进化快速跳出局部最优的VPS-GEP(Various Popu lation Strategy GEP)算法,证明了在概率意义上GEP平均每代进化所耗时间与群体规模成正比,用两个标准测试函数和一个标准测试数据集测试了VPS-GEP算法的函数挖掘能力和效率。实验表明,VPS-GEP算法可以减少进化停滞代数55%以上。
文摘针对传统GEP(Gene Expression Programming)算法的未成熟收敛以及陷入局部最优问题,提出一种基于多样化进化策略的基因表达式编程算法(DS-GEP:Gene Expression Programming based on diversified develop-ment strategy)。该算法通过基因空间均匀分布策略,自适应地交叉和变异算子以及淘汰算子等方法,对种群给予不同的进化策略,以保持种群的多样性,从而增强算法的寻优能力。通过对函数挖掘的实验证明,多样化进化策略各个部分均对改善挖掘效率发挥了作用,提高了DS-GEP函数挖掘算法的成功率。与传统GEP算法相比较,该算法的平均成功进化代数缩短了11%,成功进化时间缩短了8%,进化成功率提高了20%。