Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. ...Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. Firstly the mechanical model to analysis the stability of cave roof under pile tip is founded aiming to solve the problems that the simplified mechanical model has. Secondly, the boundary of cave roof is simply supposed to be supported according to the integrity of the rock mass in the boundary of cave roof. Thirdly, based on the theory of plates and shells, the simplified model is calculated and the theoretical calculation formula to determine the safe thickness of cave roof under pile tip can be obtained when the edges of the cave roof are simply supported. In the end, the analysis of the practical engineering project proves the feasibility and the rationality of the method which can be a new method to calculate the safe thickness of cave roof under pile tip.展开更多
The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal...The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal force relationship of five stages were proposed. Then, the formulas for determining the midspan deflection of the steel beam under distributed load, which was restrained both in rotational and axial directions, were obtained using restraint coefficient method and rigid-plastic mechanism, thereby the deformation development process was expressed accurately in a quantified way. Priority was given to the analysis of the process from bending to tension-bending, then the final state totally depends on tension to resist the external loads, that is the problem of catenary action of the restrained beam under distributed load. Additionally, finite element analysis was carried out with soitware ABAQUS6.7 on a restrained steel beam under distributed load with different axial and rotational restraint coefficients. The accuracy of the formulas presented was verified by the results of the behavior of the restrained beams. Finally, error analysis was conducted and some formulas were corrected according to the reasons of errors. The calculated results of corrected formulas match the FEM analysis results better, thus the accuracy of these formulas is improve .展开更多
Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fract...Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fracture tests:three-point bending (TPB) and wedge splitting (WS).In the tests,the values of CTODc were experimentally recorded using a novel technique,in which fiber Bragg grating (FBG) sensors were used,and two traditional techniques,in which strain gauges and clip gauges were deployed.The values of CTODc of tested concrete were also predicted using two existing analytical formulae proposed by JENQ & SHAH and XU,respectively.It is found that the values of CTODc obtained by both experimental measurements and analytical formulae exhibit a negligible variation as the compressive strength of concrete increases,and the test geometry adopted has little impact on the value of CTODc.Regarding the experimental measurement of CTODc,the clip gauge method generally leads to a larger value of CTODc and shows a more significant scatter as compared with the other two methods,while the strain gauge method leads to a slightly lower CTODc as compared with the FBG sensor method.The analytical formula proposed by JENQ and SHAH is found to generally lead to an overestimation,while the analytical formula proposed by XU shows a good accuracy.展开更多
基金Project(14JJ4003) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2013M531812) supported by China Postdoctoral Science Foundation+1 种基金Project supported by the Postdoctoral Foundation of Central South UniversityProject(14JJ4003) Project(2013SCEEKL001) supported by Foundation of Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment,China
文摘Cave roofs are used to support pile foundation in many engineering projects. Accurate stability analysis method of cave roof under pile tip is important in order to ensure the safety of the pile foundation structure. Firstly the mechanical model to analysis the stability of cave roof under pile tip is founded aiming to solve the problems that the simplified mechanical model has. Secondly, the boundary of cave roof is simply supposed to be supported according to the integrity of the rock mass in the boundary of cave roof. Thirdly, based on the theory of plates and shells, the simplified model is calculated and the theoretical calculation formula to determine the safe thickness of cave roof under pile tip can be obtained when the edges of the cave roof are simply supported. In the end, the analysis of the practical engineering project proves the feasibility and the rationality of the method which can be a new method to calculate the safe thickness of cave roof under pile tip.
基金Project(2006BAJ01B02)supported by the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period of China
文摘The changing law of internal forces during the whole deformation development process was analyzed. The process was divided into five stages based on the internal force state of the beam and the assumptions of internal force relationship of five stages were proposed. Then, the formulas for determining the midspan deflection of the steel beam under distributed load, which was restrained both in rotational and axial directions, were obtained using restraint coefficient method and rigid-plastic mechanism, thereby the deformation development process was expressed accurately in a quantified way. Priority was given to the analysis of the process from bending to tension-bending, then the final state totally depends on tension to resist the external loads, that is the problem of catenary action of the restrained beam under distributed load. Additionally, finite element analysis was carried out with soitware ABAQUS6.7 on a restrained steel beam under distributed load with different axial and rotational restraint coefficients. The accuracy of the formulas presented was verified by the results of the behavior of the restrained beams. Finally, error analysis was conducted and some formulas were corrected according to the reasons of errors. The calculated results of corrected formulas match the FEM analysis results better, thus the accuracy of these formulas is improve .
基金Project(50438010) supported by the Key Program of the National Natural Science Foundation of ChinaProject(JGZXJJ2006-13) supported by the Research and Application Programs of Key Technologies for Major Constructions in the South-North Water Transfer Project Construction in China
文摘Critical crack tip opening displacement (CTODc) of concrete using experimental and analytical evaluation with seven different compressive strengths ranging from 30 up to 150 MPa was studied based on two types of fracture tests:three-point bending (TPB) and wedge splitting (WS).In the tests,the values of CTODc were experimentally recorded using a novel technique,in which fiber Bragg grating (FBG) sensors were used,and two traditional techniques,in which strain gauges and clip gauges were deployed.The values of CTODc of tested concrete were also predicted using two existing analytical formulae proposed by JENQ & SHAH and XU,respectively.It is found that the values of CTODc obtained by both experimental measurements and analytical formulae exhibit a negligible variation as the compressive strength of concrete increases,and the test geometry adopted has little impact on the value of CTODc.Regarding the experimental measurement of CTODc,the clip gauge method generally leads to a larger value of CTODc and shows a more significant scatter as compared with the other two methods,while the strain gauge method leads to a slightly lower CTODc as compared with the FBG sensor method.The analytical formula proposed by JENQ and SHAH is found to generally lead to an overestimation,while the analytical formula proposed by XU shows a good accuracy.