为了使基于过程的作物模型(Based on Process Model,BPM)和基于结构的作物模型(Structure Model,SM)更好的衔接。该研究依据温室番茄的生理特性,分析了单位叶面积蔗糖产量与光合有效辐射的关系,建立了单位叶面积蔗糖产量子模型;利用有...为了使基于过程的作物模型(Based on Process Model,BPM)和基于结构的作物模型(Structure Model,SM)更好的衔接。该研究依据温室番茄的生理特性,分析了单位叶面积蔗糖产量与光合有效辐射的关系,建立了单位叶面积蔗糖产量子模型;利用有效叶面积与有效积温的关系公式,建立了有效叶面积的预测模型。将二者整合,构建了基于蔗糖的温室番茄光合作用模型并采用独立的试验数据对模型进行了验证。结果表明,单位叶面积蔗糖产量的预测结果的决定系数R~2和RMSE分别为0.98和0.95 g/m^(2);有效叶面积的预测结果的R~2和RMSE为0.96和0.02 m^(2);单株蔗糖产量的预测结果的R2和RMSE为0.97和48.58 mg/株。该文提出的有效叶面积初步解决了番茄因不断摘除老叶导致叶面积发展规律不断被打破导致无法准确模拟的问题,所建立的光合作用模型初步实现了基于过程的作物生长模型和基于结构的生长模型的有效融合。展开更多
文摘为了使基于过程的作物模型(Based on Process Model,BPM)和基于结构的作物模型(Structure Model,SM)更好的衔接。该研究依据温室番茄的生理特性,分析了单位叶面积蔗糖产量与光合有效辐射的关系,建立了单位叶面积蔗糖产量子模型;利用有效叶面积与有效积温的关系公式,建立了有效叶面积的预测模型。将二者整合,构建了基于蔗糖的温室番茄光合作用模型并采用独立的试验数据对模型进行了验证。结果表明,单位叶面积蔗糖产量的预测结果的决定系数R~2和RMSE分别为0.98和0.95 g/m^(2);有效叶面积的预测结果的R~2和RMSE为0.96和0.02 m^(2);单株蔗糖产量的预测结果的R2和RMSE为0.97和48.58 mg/株。该文提出的有效叶面积初步解决了番茄因不断摘除老叶导致叶面积发展规律不断被打破导致无法准确模拟的问题,所建立的光合作用模型初步实现了基于过程的作物生长模型和基于结构的生长模型的有效融合。