The work address the problem of modeling the dynamical oscillating behavior during both unstable and stable operations, of an experimental thermosyphon. A standard RBF artificial neural network-based prediction model ...The work address the problem of modeling the dynamical oscillating behavior during both unstable and stable operations, of an experimental thermosyphon. A standard RBF artificial neural network-based prediction model was developed for predicting the oscillating heat transfer of thermosyphon by means of input-output experimental measurements with the characteristics of time series. A comparison of prediction values between the RBF network and the MLP network was giving.The precision of RBF network was higher than that of the other neural networks such as BP-MLP network etc . The dynamical model of RBF network could be used to describe, predict and control the heat transfer process of a thermosyphon or a heat pipe system.展开更多
As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo...As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.展开更多
文摘The work address the problem of modeling the dynamical oscillating behavior during both unstable and stable operations, of an experimental thermosyphon. A standard RBF artificial neural network-based prediction model was developed for predicting the oscillating heat transfer of thermosyphon by means of input-output experimental measurements with the characteristics of time series. A comparison of prediction values between the RBF network and the MLP network was giving.The precision of RBF network was higher than that of the other neural networks such as BP-MLP network etc . The dynamical model of RBF network could be used to describe, predict and control the heat transfer process of a thermosyphon or a heat pipe system.
基金Project(531107040300) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(2006BAJ04B04) supported by the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period of China
文摘As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately.