与传统柔性直流输电系统相比,基于模块化多电平变换器的多端柔性直流输电系统(modular multi-level converter based multi-terminal high voltage direct current,MMC-MTDC)因子模块数量更大、结构更复杂、运行状态更多,使其可靠性建...与传统柔性直流输电系统相比,基于模块化多电平变换器的多端柔性直流输电系统(modular multi-level converter based multi-terminal high voltage direct current,MMC-MTDC)因子模块数量更大、结构更复杂、运行状态更多,使其可靠性建模更具挑战。该文提出一种考虑模块冗余和系统状态的MMC-MTDC可靠性的蒙特卡洛分析方法。首先,以可靠性框图法为基础,建立考虑模块冗余的换流阀可靠性模型,并进一步构建了考虑多设备影响的换流站可靠性模型。其次,在实际运行的多状态转移过程分析基础上,建立了考虑状态转移持续时间的MMC-MTDC概率密度模型,提出了基于蒙特卡洛的MMC-MTDC可靠性模型求解方法。最后,以某实际±200kV的MMC-MTDC系统为例,对多运行方式下的状态概率、状态持续时间及状态频率等可靠性指标进行了求解,研究可为多端柔性直流输电系统可靠性分析提供一定的参考。展开更多
低周疲劳是发动机活塞的典型失效模式,为研究多源不确定性因素对活塞低周疲劳可靠性的影响,提高可靠性分析效率,基于Polynomial-Chaos-based Kriging(PC-Kriging)模型和蒙特卡洛模拟(Monte Carlo Simulation,MCS),构建了一种新的可靠性...低周疲劳是发动机活塞的典型失效模式,为研究多源不确定性因素对活塞低周疲劳可靠性的影响,提高可靠性分析效率,基于Polynomial-Chaos-based Kriging(PC-Kriging)模型和蒙特卡洛模拟(Monte Carlo Simulation,MCS),构建了一种新的可靠性计算方法,并通过数值算例证明了该方法的准确性和高效性。以某型柴油发动机活塞组结构为研究对象,基于热-机耦合分析建立活塞有限元模型,综合考虑关键尺寸、材料属性及载荷的不确定性,运用该方法对活塞进行了低周疲劳可靠性分析。可靠性分析结果表明,与同类型方法相比,该方法计算效率更高,仅需要有限元计算20+93次,当活塞的期望设计寿命为1.4×10^(4)时,其疲劳失效概率为1.053%;灵敏度分析结果表明,活塞高度、活塞直径、材料弹性模量和疲劳计算模型参数对可靠性的影响较大,分析结果可为活塞的可靠性设计提供指导。展开更多
文摘与传统柔性直流输电系统相比,基于模块化多电平变换器的多端柔性直流输电系统(modular multi-level converter based multi-terminal high voltage direct current,MMC-MTDC)因子模块数量更大、结构更复杂、运行状态更多,使其可靠性建模更具挑战。该文提出一种考虑模块冗余和系统状态的MMC-MTDC可靠性的蒙特卡洛分析方法。首先,以可靠性框图法为基础,建立考虑模块冗余的换流阀可靠性模型,并进一步构建了考虑多设备影响的换流站可靠性模型。其次,在实际运行的多状态转移过程分析基础上,建立了考虑状态转移持续时间的MMC-MTDC概率密度模型,提出了基于蒙特卡洛的MMC-MTDC可靠性模型求解方法。最后,以某实际±200kV的MMC-MTDC系统为例,对多运行方式下的状态概率、状态持续时间及状态频率等可靠性指标进行了求解,研究可为多端柔性直流输电系统可靠性分析提供一定的参考。
文摘低周疲劳是发动机活塞的典型失效模式,为研究多源不确定性因素对活塞低周疲劳可靠性的影响,提高可靠性分析效率,基于Polynomial-Chaos-based Kriging(PC-Kriging)模型和蒙特卡洛模拟(Monte Carlo Simulation,MCS),构建了一种新的可靠性计算方法,并通过数值算例证明了该方法的准确性和高效性。以某型柴油发动机活塞组结构为研究对象,基于热-机耦合分析建立活塞有限元模型,综合考虑关键尺寸、材料属性及载荷的不确定性,运用该方法对活塞进行了低周疲劳可靠性分析。可靠性分析结果表明,与同类型方法相比,该方法计算效率更高,仅需要有限元计算20+93次,当活塞的期望设计寿命为1.4×10^(4)时,其疲劳失效概率为1.053%;灵敏度分析结果表明,活塞高度、活塞直径、材料弹性模量和疲劳计算模型参数对可靠性的影响较大,分析结果可为活塞的可靠性设计提供指导。