为拓宽吸波频段,获得高效吸波材料,以纤维素纳米纤维(CNF)为骨架、二维过渡金属碳化物(Ti_(3)C_(2)T_(x))为导电填料,制备了三维多孔气凝胶吸波材料。通过扫描电镜及透射电镜、红外光谱仪、X射线光电子能谱及衍射仪、矢量网络分析仪表...为拓宽吸波频段,获得高效吸波材料,以纤维素纳米纤维(CNF)为骨架、二维过渡金属碳化物(Ti_(3)C_(2)T_(x))为导电填料,制备了三维多孔气凝胶吸波材料。通过扫描电镜及透射电镜、红外光谱仪、X射线光电子能谱及衍射仪、矢量网络分析仪表征了其结构与各项性能。结果表明:基于气凝胶的多孔结构及Ti_(3)C_(2)T_(x)的导电损耗,使得CNF/Ti_(3)C_(2)T_(x)复合气凝胶具有吸波效能,改变Ti_(3)C_(2)T_(x)含量及气凝胶厚度可调节吸波带宽和峰值。根据三维电磁仿真软件CST STUDIO SUITE仿真模拟结果,制备Ti_(3)C_(2)T_(x)质量分数依次为1%、25%、50%的CNF/Ti_(3)C_(2)T_(x)复合气凝胶,在电磁波入射方向按照特征阻抗从大到小叠层构建阻抗阶跃渐变的多层复合结构吸波材料,该材料具有更好的阻抗匹配和衰减损耗性能,反射损耗最小可达-15.9 dB,有效吸收带宽覆盖整个X波段。展开更多
实现不同基底间高效率、高质量的二维原子晶体转移(即转移技术),是开展二维晶体异质结及柔性器件研究与应用的关键.近年以二硫化钼为代表的过渡金属硫化物(transition metal dichalcogenides,TMDs)二维半导体已成为继石墨烯之后的二维...实现不同基底间高效率、高质量的二维原子晶体转移(即转移技术),是开展二维晶体异质结及柔性器件研究与应用的关键.近年以二硫化钼为代表的过渡金属硫化物(transition metal dichalcogenides,TMDs)二维半导体已成为继石墨烯之后的二维材料研究热点.目前,TMDs常用转移技术主要包括湿法转移、干法转移、热释放胶带辅助、表面能辅助、鼓泡转移以及真空热压法等.这些方法各有利弊:湿法转移成本低、步骤简洁,但依赖聚合物支撑,容易对TMDs造成污染;干法转移借助精密位移技术可实现精准控制,特别适用微晶定位转移,但转移成功率有待提升;热释放胶带巧妙利用金属膜与TMDs二维材料间较强的吸附力,能够在不转移的情况下,直接在原始基底上构造阵列结构,但步骤相对复杂;表面能辅助法利用水在不同界面表面能差异,可实现快速自动剥离,但易引入褶皱;鼓泡转移则是通过电化学或超声方式产生的气泡崩塌使二维材料与基底界面分离,同样材料表面容易产生褶皱和破裂等缺陷;真空热压法在组装高质量、大面积多层异质结方面独具优势.该述评可为恰当选择转移方法提供指引.展开更多
文摘为拓宽吸波频段,获得高效吸波材料,以纤维素纳米纤维(CNF)为骨架、二维过渡金属碳化物(Ti_(3)C_(2)T_(x))为导电填料,制备了三维多孔气凝胶吸波材料。通过扫描电镜及透射电镜、红外光谱仪、X射线光电子能谱及衍射仪、矢量网络分析仪表征了其结构与各项性能。结果表明:基于气凝胶的多孔结构及Ti_(3)C_(2)T_(x)的导电损耗,使得CNF/Ti_(3)C_(2)T_(x)复合气凝胶具有吸波效能,改变Ti_(3)C_(2)T_(x)含量及气凝胶厚度可调节吸波带宽和峰值。根据三维电磁仿真软件CST STUDIO SUITE仿真模拟结果,制备Ti_(3)C_(2)T_(x)质量分数依次为1%、25%、50%的CNF/Ti_(3)C_(2)T_(x)复合气凝胶,在电磁波入射方向按照特征阻抗从大到小叠层构建阻抗阶跃渐变的多层复合结构吸波材料,该材料具有更好的阻抗匹配和衰减损耗性能,反射损耗最小可达-15.9 dB,有效吸收带宽覆盖整个X波段。
文摘实现不同基底间高效率、高质量的二维原子晶体转移(即转移技术),是开展二维晶体异质结及柔性器件研究与应用的关键.近年以二硫化钼为代表的过渡金属硫化物(transition metal dichalcogenides,TMDs)二维半导体已成为继石墨烯之后的二维材料研究热点.目前,TMDs常用转移技术主要包括湿法转移、干法转移、热释放胶带辅助、表面能辅助、鼓泡转移以及真空热压法等.这些方法各有利弊:湿法转移成本低、步骤简洁,但依赖聚合物支撑,容易对TMDs造成污染;干法转移借助精密位移技术可实现精准控制,特别适用微晶定位转移,但转移成功率有待提升;热释放胶带巧妙利用金属膜与TMDs二维材料间较强的吸附力,能够在不转移的情况下,直接在原始基底上构造阵列结构,但步骤相对复杂;表面能辅助法利用水在不同界面表面能差异,可实现快速自动剥离,但易引入褶皱;鼓泡转移则是通过电化学或超声方式产生的气泡崩塌使二维材料与基底界面分离,同样材料表面容易产生褶皱和破裂等缺陷;真空热压法在组装高质量、大面积多层异质结方面独具优势.该述评可为恰当选择转移方法提供指引.