期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:30
1
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
2
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 深度学习
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
3
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
基于改进一维卷积和双向长短期记忆神经网络的故障诊断方法 被引量:14
4
作者 董永峰 孙跃华 +2 位作者 高立超 韩鹏 季海鹏 《计算机应用》 CSCD 北大核心 2022年第4期1207-1215,共9页
针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自... 针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自动提取以及振动信号的分类。首先,采用自适应白噪声的完整经验模态分解(CEEMDAN)技术对原始振动信号进行预处理;其次,构建1DCNN-BiLSTM双通道模型,将处理后信号输入双向长短期记忆(BiLSTM)神经网络模型和一维卷积神经网络(1DCNN)模型两个通道,从而对信号的时序相关性特征、局部空间的非相关性特征和弱周期性规律进行充分提取;然后,针对信号夹杂强噪声的问题,对压缩与激励网络(SENet)模块进行改进并将其作用于两个不同的通道;最后,输入全连接层将双通道提取的特征进行融合并借助Softmax分类器实现对设备故障的精确识别。使用凯斯西储大学轴承数据集进行实验,结果表明改进后的SENet模块同时作用于1DCNN通道和stacked BiLSTM通道,1DCNN-BiLSTM双通道模型在保证快速收敛的情况下有最高诊断精度96.87%,优于传统单通道模型,有效提高了机械设备故障诊断效率。 展开更多
关键词 注意力机制 一维卷积神经网络 双向长短期记忆神经网络 双通道 故障诊断
在线阅读 下载PDF
基于一维卷积神经网络与长短期记忆网络结合的电池荷电状态预测方法 被引量:17
5
作者 倪水平 李慧芳 《计算机应用》 CSCD 北大核心 2021年第5期1514-1521,共8页
针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNNLSTM模型。1D CNN-LSTM模型将电池的电流... 针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNNLSTM模型。1D CNN-LSTM模型将电池的电流、电压和电阻映射到目标值SOC。首先,通过一层一维卷积层从样本数据中提取出高级数据特征,并充分地利用输入数据的特征信息;其次,使用一层LSTM层保存历史输入信息,从而有效地预防重要信息的丢失;最后,通过一层全连接层输出电池SOC预测结果。使用电池的多次循环充放电实验数据训练提出的模型,分析对比不同超参数设置下1D CNN-LSTM模型的预测效果,并通过训练模型来调节模型的权重系数和偏置参数,从而确定最优的模型设置。实验结果表明,1D CNN-LSTM模型具有准确且稳定的电池SOC预测效果。该模型的平均绝对误差(MAE)、均方误差(MSE)和最大预测误差分别为0.402 7%、0.002 9%和0.99%。 展开更多
关键词 一维卷积神经网络 循环神经网络 长短期记忆 荷电状态预测 电池
在线阅读 下载PDF
基于Softmax函数增强卷积神经网络—双向长短期记忆网络框架的交通拥堵预测算法 被引量:20
6
作者 陈悦 杨柳 +3 位作者 李帅 刘恒 唐优华 郑佳雯 《科学技术与工程》 北大核心 2022年第29期12917-12926,共10页
对交通状态进行预测,需要准确识别和判断交通状态。基于道路自身的自由流速度,将具有不同速度等级的街道统一以旅行时间指数(travel time index, TTI)作为拥堵评价,相较于以车辆速度为基准的传统预测方法更能表现出道路的拥堵状态。提... 对交通状态进行预测,需要准确识别和判断交通状态。基于道路自身的自由流速度,将具有不同速度等级的街道统一以旅行时间指数(travel time index, TTI)作为拥堵评价,相较于以车辆速度为基准的传统预测方法更能表现出道路的拥堵状态。提出了一种改进的深度学习预测模型(CS-BiLSTM),该模型基于卷积神经网络(convolutional neural networks, CNN)和双向长短期记忆(bidirectional long short-term memory, BiLSTM),并结合Softmax函数增强CNN提取出的交通空间特征信息。最后以成都市出租车的全球定位系统(global positioning system, GPS)数据进行验证。结果表明,所提出的CS-BiLSTM模型具有更高的准确性,其性能相比CNN-BiLSTM网络预测框架提升了13%。 展开更多
关键词 交通拥堵预测 旅行时间指数(TTI) 卷积神经网络(CNN) Softmax函数 双向长短期记忆(BiLSTM)
在线阅读 下载PDF
基于卷积双向长短期神经网络的调制方式识别 被引量:8
7
作者 谭继远 张立民 钟兆根 《火力与指挥控制》 CSCD 北大核心 2020年第6期129-134,共6页
针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制... 针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制方式识别方法。利用CNN卷积运算提取信号的空间特征,利用BiLSTM提取到信号的时序相关性,利用softmax层输出识别概率,达到多调制识别的目的。实验结果表明,在没有信道和噪声等先验信息的条件下,该方法的识别性能得到了进一步提升,能有效识别16QAM、64QAM等11种调制类别,且该方法的复杂度较低,大大节省了训练识别时间,具有较好的工程应用价值。 展开更多
关键词 调制识别 卷积神经网络 双向长短期记忆神经网络 深度学习
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:2
8
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
基于卷积-双向长短期记忆网络的电池SOC预测 被引量:11
9
作者 陈继斌 李雯雯 +2 位作者 孙彦玺 许静 张单 《电源技术》 CAS 北大核心 2022年第5期532-535,共4页
锂电池的预测性维护是电池应用的重点,实现它的关键是有效地预测锂电池的荷电状态(SOC)。随着信息技术和深度学习网络算法的发展,深度学习法在SOC预测方面显示出很好的潜力。提出了一种基于卷积-双向长短期记忆网络(CNN-BiLSTM)的SOC预... 锂电池的预测性维护是电池应用的重点,实现它的关键是有效地预测锂电池的荷电状态(SOC)。随着信息技术和深度学习网络算法的发展,深度学习法在SOC预测方面显示出很好的潜力。提出了一种基于卷积-双向长短期记忆网络(CNN-BiLSTM)的SOC预测方法,利用卷积神经网络(CNN)模型提取局部特征,双向长短期记忆网络(BiLSTM)充分利用双向SOC的时间信息。在公共数据集上的对比实验表明,该模型提高了SOC预测的准确性。 展开更多
关键词 荷电状态 卷积神经网络 双向长短期记忆 锂电池 深度学习
在线阅读 下载PDF
基于卷积双向长短期记忆网络与混沌理论的滚动轴承故障诊断 被引量:7
10
作者 金江涛 许子非 +3 位作者 李春 缪维跑 孙康 肖俊青 《振动与冲击》 EI CSCD 北大核心 2022年第17期160-169,共10页
针对传统滚动轴承故障诊断方法在大噪声与变载荷环境下诊断困难的问题。基于混沌理论,通过卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)提出CCNN(Chaotic CNN)-BiLSTM智能故障诊断方法。采用相空间重构法将一维时间序列转化为二维混... 针对传统滚动轴承故障诊断方法在大噪声与变载荷环境下诊断困难的问题。基于混沌理论,通过卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)提出CCNN(Chaotic CNN)-BiLSTM智能故障诊断方法。采用相空间重构法将一维时间序列转化为二维混沌序列,学习并提取混沌序列中有效非线性信息,并输入Softmax层中完成分类。结果表明,较之现有方法,所提CCNN-BiLSTM方法在变载荷和大噪声(信噪比为-8 dB)环境下的准确率分别至少高出3.76%与5.21%,表明该方法具有良好的鲁棒性和泛化性能。 展开更多
关键词 卷积神经网络 双向长短期记忆网络 混沌理论 轴承 故障诊断
在线阅读 下载PDF
基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测 被引量:5
11
作者 郭应时 张瑞宾 +2 位作者 陈元华 李天明 蒋春燕 《汽车技术》 CSCD 北大核心 2022年第3期21-27,共7页
针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状... 针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状态观测数据的潜在特征,然后将以序列方式构造的具有时空关系的特征向量作为BiLSTM网络的输入数据,最后利用车辆运行数据对所构建的1DCNN-BiLSTM模型进行训练,形成期望的输入输出映射关系,从而预测车辆的行驶轨迹。试验结果表明,1DCNN-BiLSTM相比传统方法能更加准确有效地处理序列数据,对车辆运行轨迹预测的效果也具有较高的鲁棒性。 展开更多
关键词 观测数据 卷积神经网络 双向长短期记忆 时空关系 轨迹预测
在线阅读 下载PDF
采用小波变换和双向长短期记忆网络的脑电睡眠分期模型 被引量:9
12
作者 王天宇 陈晗 +1 位作者 王刚 吴宁 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期104-111,共8页
针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作... 针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作为单个睡眠片段的分期依据,再使用双向长短期记忆网络进一步提取睡眠片段之间的状态转换规则;最后利用深度学习方法建立特征、规则与睡眠阶段的映射,使用数据扩充和两步训练法训练模型,削弱数据不均衡的影响,完成连续片段的睡眠分期。采用SHHS公开数据库的5793名被试者的睡眠脑电数据对该模型进行验证,实验结果表明,睡眠分期准确率达到85.82%,整体F1达到78.39,Kappa系数达到0.799,和现有方法相比性能明显提升。 展开更多
关键词 睡眠分期 脑电信号 连续小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于改进的双向长短期记忆网络的视频摘要生成模型 被引量:8
13
作者 武光利 李雷霆 +1 位作者 郭振洲 王成祥 《计算机应用》 CSCD 北大核心 2021年第7期1908-1914,共7页
针对传统视频摘要方法往往没有考虑时序信息以及提取的视频特征过于复杂、易出现过拟合现象的问题,提出一种基于改进的双向长短期记忆(BiLSTM)网络的视频摘要生成模型。首先,通过卷积神经网络(CNN)提取视频帧的深度特征,而且为了使生成... 针对传统视频摘要方法往往没有考虑时序信息以及提取的视频特征过于复杂、易出现过拟合现象的问题,提出一种基于改进的双向长短期记忆(BiLSTM)网络的视频摘要生成模型。首先,通过卷积神经网络(CNN)提取视频帧的深度特征,而且为了使生成的视频摘要更具多样性,采用BiLSTM网络将深度特征识别任务转换为视频帧的时序特征标注任务,让模型获得更多上下文信息;其次,考虑到生成的视频摘要应当具有代表性,因此通过融合最大池化在降低特征维度的同时突出关键信息以淡化冗余信息,使模型能够学习具有代表性的特征,而特征维度的降低也减少了全连接层需要的参数,避免了过拟合问题;最后,预测视频帧的重要性分数并转换为镜头分数,以此选取关键镜头生成视频摘要。实验结果表明,在标准数据集TvSum和SumMe上,改进后的视频摘要生成模型能提升生成视频摘要的准确性;而且它的F1-score值也比基于长短期记忆(LSTM)网络的视频摘要模型DPPLSTM在两个数据集上分别提高1.4和0.3个百分点。 展开更多
关键词 视频摘要 卷积神经网络 双向长短期记忆网络 最大池化
在线阅读 下载PDF
基于1D-CNN-LSTM混合神经网络模型的双桥并联励磁功率单元故障诊断 被引量:16
14
作者 杨彦杰 董哲 +2 位作者 姚芳 时光希 孙若愚 《电网技术》 EI CSCD 北大核心 2021年第5期2025-2032,共8页
针对双桥并联励磁功率单元的晶闸管开路故障,提出一种基于一维卷积神经网络(1D-convolutional neural networks,1D-CNN)和长短期记忆网络(long short-term memory,LSTM)混合模型的故障诊断方法。将1号整流桥共阴极侧、共阳极侧电流和AB... 针对双桥并联励磁功率单元的晶闸管开路故障,提出一种基于一维卷积神经网络(1D-convolutional neural networks,1D-CNN)和长短期记忆网络(long short-term memory,LSTM)混合模型的故障诊断方法。将1号整流桥共阴极侧、共阳极侧电流和AB相线电压构造时序特征向量作为输入,利用1D-CNN提取并重构样本空间特征;考虑到输入量本身是时间序列数据,采用LSTM网络进一步提取特征。根据特征向量与故障类别对应关系实现故障诊断。仿真结果表明,该模型能够有效地实现双桥并联励磁功率单元故障诊断,具有良好的抗噪能力。 展开更多
关键词 故障诊断 励磁功率单元 长短期记忆网络 一维卷积神经网络
在线阅读 下载PDF
基于卷积神经网络的多通道特征表示文本分类模型 被引量:8
15
作者 黄卫春 邹瑶 +1 位作者 熊李艳 陶自强 《科学技术与工程》 北大核心 2021年第16期6764-6771,共8页
尽管长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolutional neural network,CNN)及其结合体在文本分类任务中取得了很大的突破。但这类模型在对序列信息进行编码时,往往无法同时考虑当前时刻之前和之后的状态,从... 尽管长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolutional neural network,CNN)及其结合体在文本分类任务中取得了很大的突破。但这类模型在对序列信息进行编码时,往往无法同时考虑当前时刻之前和之后的状态,从而导致最后分类效果不佳。此外,多版本预训练词向量比单个版本的预训练词向量包含更多的信息。因此提出了一种基于CNN的多通道特征表示文本分类模型(multi-channel feature representation text classification model based on CNN,MC-CNN)。该模型首先通过两个不同的双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)来对不同来源词向量所表示的文本序列进行正逆序上的特征提取,并以此形成多通道特征;然后利用多尺度卷积网络来进一步使得模型能够同时充分考虑到当前时刻之前以及之后的信息,从而更加有效地进行文本分类。MC-CNN在MR、SST-2、TREC、AG、Yelp_F、Yelp_P数据集上分别达到了81.6%、87.4%、98.6%、94.1%、65.9%、96.8%的准确率,实验结果表明本文模型MC-CNN在文本分类任务中具有优异的效果。 展开更多
关键词 文本分类 多通道特征图 双向长短期记忆(Bi-LSTM) 卷积神经网络(CNN)
在线阅读 下载PDF
基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度智能预测 被引量:5
16
作者 郭力 郑良瑞 冯浪 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第3期401-409,共9页
部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向... 部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。 展开更多
关键词 部分稳定氧化锆 磨削声发射 相关性分析 卷积-双向长短期记忆神经网络 表面粗糙度预测
在线阅读 下载PDF
基于卷积循环神经网络的桃树叶部病害图像识别 被引量:9
17
作者 孙文杰 牟少敏 +2 位作者 董萌萍 周子豪 李颀 《山东农业大学学报(自然科学版)》 北大核心 2020年第6期998-1003,共6页
桃树炭疽病和褐斑病具有相似度高、症状关联度高和病斑位置不同等特点,卷积神经网络在识别过程中,卷积层和池化层分别对病害区域进行局部卷积和池化操作,未考虑各病害区域间的上下文相关信息和位置信息,降低了识别准确率。而双向长短期... 桃树炭疽病和褐斑病具有相似度高、症状关联度高和病斑位置不同等特点,卷积神经网络在识别过程中,卷积层和池化层分别对病害区域进行局部卷积和池化操作,未考虑各病害区域间的上下文相关信息和位置信息,降低了识别准确率。而双向长短期记忆网络由两个正向和反向的长短期记忆网络组成,且各循环单元之间具有反馈连接,能够挖掘和记忆输入序列数据中的上下文相关信息和位置信息。因此,本文提出了一种基于VGGNet-BiLSTM的桃树叶部病害图像识别算法。结果表明,本文提出的算法在测试集上识别准确率为93.73%,具有较高的识别准确率。 展开更多
关键词 桃树叶部病害 图像识别 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于混合神经网络的文本分类方法 被引量:9
18
作者 梁顺攀 豆明明 +1 位作者 于洪涛 郑智中 《计算机工程与设计》 北大核心 2022年第2期573-579,共7页
为更好解决卷积神经网络提取特征不充分,难以处理长文本结构信息和捕获句子语义关系等问题,提出一种融合CNN和自注意力BiLSTM的并行神经网络模型TC-ABlstm。对传统的卷积神经网络进行改进,增强对文本局部特征的提取能力;设计结合注意力... 为更好解决卷积神经网络提取特征不充分,难以处理长文本结构信息和捕获句子语义关系等问题,提出一种融合CNN和自注意力BiLSTM的并行神经网络模型TC-ABlstm。对传统的卷积神经网络进行改进,增强对文本局部特征的提取能力;设计结合注意力机制的双向长短期记忆神经网络模型来捕获文本上下文相关的全局特征;结合两个模型提取文本特征的优势,提高分类的准确性。在搜狗语料库和复旦大学中文语料库上的实验结果表明,所提模型能有效提升文本分类准确度。 展开更多
关键词 文本分类 卷积神经网络 双向长短期记忆模型 Selu函数 自注意力机制
在线阅读 下载PDF
基于Bi-LSTM和改进残差学习的风电功率超短期预测方法 被引量:2
19
作者 王进峰 吴盛威 +1 位作者 花广如 吴自高 《华北电力大学学报(自然科学版)》 北大核心 2025年第1期56-65,共10页
现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆... 现有的方法在以风电功率时间序列拟合功率曲线时,难以表达风电功率数据所包含的趋势性和周期性等时间信息而出现性能退化问题,从而导致预测精度下降。为了解决性能退化问题从而提高风电功率时间序列预测的精度,提出了基于双向长短时记忆(Bi-LSTM)和改进残差学习的风电功率预测方法。方法由两个部分组成,第一部分是以Bi-LSTM为主的多残差块上,结合稠密残差块网络(DenseNet)与多级残差网络(MRN)的残差连接方式,并且在残差连接上使用一维卷积神经网络(1D CNN)来提取风电功率值中时序的非线性特征部分。第二部分是Bi-LSTM与全连接层(Dense)组成的解码器,将多残差块提取到的功率值时序非线性特征映射为预测结果。方法在实际运行的风电功率数据上进行实验,并与常见的残差网络方法和时间序列预测方法进行对比。方法相比于其他模型方法有着更高的预测精度以及更好的泛化能力。 展开更多
关键词 深度学习 残差网络 风电功率预测 双向长短记忆 一维卷积神经网络
在线阅读 下载PDF
基于注意力与神经网络的视频流行度预测模型
20
作者 马学森 杨智捷 +1 位作者 储昭坤 周天保 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第11期1472-1478,共7页
针对传统预测算法预测精度低及难以处理多变量的时序数据等缺点,文章提出一种采用双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络和时间模式注意力(temporal pattern attention,TPA)机制相结合的视频流行度预测模... 针对传统预测算法预测精度低及难以处理多变量的时序数据等缺点,文章提出一种采用双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络和时间模式注意力(temporal pattern attention,TPA)机制相结合的视频流行度预测模型。双向长短期记忆网络从视频流行度时间序列的正向和反向提取时间特征,时间模式注意力机制从双向长短期记忆网络输出状态的深层特征提取时间模式,有利于视频流行度预测。真实视频数据的实验结果表明,与经典时序预测方法相比,TPA-BiLSTM模型能够有效地降低预测的误差,提高预测的准确性。 展开更多
关键词 流行度预测 多元时间序列 双向长短期记忆(BiLSTM)网络 注意力机制 卷积神经网络(CNN)
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部