期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:23
1
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的气温预测模型
2
作者 叶剑 唐欢 +1 位作者 殷华 高振翔 《现代信息科技》 2024年第21期35-40,45,共7页
气温与环境要素之间存在非线性关系,针对传统的预测方法难以捕捉数据的内在特征和时间相关性问题,提出一种基于卷积神经网络与双向长短期记忆网络相结合的气温预测模型。基于宿迁四个国家气象观测站的逐小时观测数据,首先通过一维卷积... 气温与环境要素之间存在非线性关系,针对传统的预测方法难以捕捉数据的内在特征和时间相关性问题,提出一种基于卷积神经网络与双向长短期记忆网络相结合的气温预测模型。基于宿迁四个国家气象观测站的逐小时观测数据,首先通过一维卷积神经网络提取气象要素数据的空间特征,然后将这些特征引入双向长短期记忆网络中来全面学习并掌握气象要素的上下文信息,进而对气温进行有效预测。实验结果表明,与其他的预测方法相比,所提模型在空间特征提取和时序特征学习方面表现卓越,且其在气温预测的精度上有显著的优势。 展开更多
关键词 深度学习 卷积神经网络 双向长短期记忆网络 气温预测 对比分析
在线阅读 下载PDF
基于卷积双向长短期神经网络的调制方式识别 被引量:8
3
作者 谭继远 张立民 钟兆根 《火力与指挥控制》 CSCD 北大核心 2020年第6期129-134,共6页
针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制... 针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制方式识别方法。利用CNN卷积运算提取信号的空间特征,利用BiLSTM提取到信号的时序相关性,利用softmax层输出识别概率,达到多调制识别的目的。实验结果表明,在没有信道和噪声等先验信息的条件下,该方法的识别性能得到了进一步提升,能有效识别16QAM、64QAM等11种调制类别,且该方法的复杂度较低,大大节省了训练识别时间,具有较好的工程应用价值。 展开更多
关键词 调制识别 卷积神经网络 双向长短期记忆神经网络 深度学习
在线阅读 下载PDF
基于CNN-LSTM混合神经网络的高速铁路地震响应预测 被引量:3
4
作者 张学兵 谢啸楠 +1 位作者 王礼 吴晗 《湘潭大学学报(自然科学版)》 CAS 2024年第1期1-13,共13页
为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设... 为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设准分布式光纤光栅采集地震时轨道板、钢轨、底座板、箱梁的响应数据,在每根光纤上布置7个光栅,利用两边光栅的响应数据预测中间点的光栅响应,将采集位置、历史数据及地震波形等信息作为特征图输入.利用CNN提取特征,再将提前提取出来的特征数据以时序方式作为LSTM网络的输入数据,最后LSTM网络进行地震应变响应预测.实验结果表明,LSTM网络在3层时效果最好,CNN-LSTM方法具有较高的预测精度,根均平方误差(R_(RMSE))、平均绝对误差(R_(MAE))、决定系数(R^(2))分别达到了0.3753、0.2968、0.9371. 展开更多
关键词 准分布式光纤光栅 振动台试验 地震响应 卷积神经网络-长短期记忆网络混合模型
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:1
5
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
基于卷积双向长短期记忆网络与混沌理论的滚动轴承故障诊断 被引量:5
6
作者 金江涛 许子非 +3 位作者 李春 缪维跑 孙康 肖俊青 《振动与冲击》 EI CSCD 北大核心 2022年第17期160-169,共10页
针对传统滚动轴承故障诊断方法在大噪声与变载荷环境下诊断困难的问题。基于混沌理论,通过卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)提出CCNN(Chaotic CNN)-BiLSTM智能故障诊断方法。采用相空间重构法将一维时间序列转化为二维混... 针对传统滚动轴承故障诊断方法在大噪声与变载荷环境下诊断困难的问题。基于混沌理论,通过卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)提出CCNN(Chaotic CNN)-BiLSTM智能故障诊断方法。采用相空间重构法将一维时间序列转化为二维混沌序列,学习并提取混沌序列中有效非线性信息,并输入Softmax层中完成分类。结果表明,较之现有方法,所提CCNN-BiLSTM方法在变载荷和大噪声(信噪比为-8 dB)环境下的准确率分别至少高出3.76%与5.21%,表明该方法具有良好的鲁棒性和泛化性能。 展开更多
关键词 卷积神经网络 双向长短期记忆网络 混沌理论 轴承 故障诊断
在线阅读 下载PDF
基于CNN-LSTM的复合神经网络在油田污水系统故障诊断中的应用 被引量:1
7
作者 钟艳 《吉林大学学报(信息科学版)》 CAS 2024年第5期817-828,共12页
为提高油田污水系统故障诊断的智能化水平和准确性,利用卷积神经网络以及长短期记忆网络构建复合神经网络,并采用Adam与随机梯度下降法对结构进行优化,使模型收敛速度以及故障诊断精度得到提升。通过相关实验研究结果表明,采用的优化算... 为提高油田污水系统故障诊断的智能化水平和准确性,利用卷积神经网络以及长短期记忆网络构建复合神经网络,并采用Adam与随机梯度下降法对结构进行优化,使模型收敛速度以及故障诊断精度得到提升。通过相关实验研究结果表明,采用的优化算法使模型准确度提升至0.87左右,模型诊断损失率降至0.032左右;复合神经网络结构的平均检测精度达到0.888,准确值达到0.883,召回率达到0.789。将复合神经网络应用于油田污水系统故障诊断中,使油田污水系统实现智能故障检测,并能降低经济成本,益于智慧油田建设。 展开更多
关键词 卷积神经网络-长短期记忆 复合神经网络 污水系统 故障检测 随机梯度下降法 智慧油田
在线阅读 下载PDF
基于CNN-BiLSTM混合神经网络的雷达信号调制方式识别 被引量:3
8
作者 房崇鑫 盛震宇 +1 位作者 夏明 周慧成 《无线电工程》 2024年第6期1440-1445,共6页
针对具有时频特性的雷达信号,传统的雷达信号识别方法已经无法满足对信号类型精准识别的需求,因此需要通过采集并分析雷达信号脉内的时频特征实现对目标雷达的具体信息进行有效评估。设计了一种卷积-双向长短时记忆(Convolution-Bidirec... 针对具有时频特性的雷达信号,传统的雷达信号识别方法已经无法满足对信号类型精准识别的需求,因此需要通过采集并分析雷达信号脉内的时频特征实现对目标雷达的具体信息进行有效评估。设计了一种卷积-双向长短时记忆(Convolution-Bidirectional Long Short-Term Memory,CNN-BiLSTM)混合神经网络模型,主要通过BiLSTM的时序记忆特性深度挖掘雷达信号的时域特征,结合权值共享特性和CNN层捕获雷达信号的时频特征,再利用二者信号特征联合完成对雷达信号调制方式的识别。通过对比实验验证,所提方法对若干种雷达信号的识别具有较高的准确度,平均值达到95.349%;优于只使用单一特征的网络和传统算法,具有良好的抗噪声能力。 展开更多
关键词 深度学习 卷积-双向长短记忆混合神经网络 雷达信号调制识别
在线阅读 下载PDF
基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测 被引量:5
9
作者 郭应时 张瑞宾 +2 位作者 陈元华 李天明 蒋春燕 《汽车技术》 CSCD 北大核心 2022年第3期21-27,共7页
针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状... 针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状态观测数据的潜在特征,然后将以序列方式构造的具有时空关系的特征向量作为BiLSTM网络的输入数据,最后利用车辆运行数据对所构建的1DCNN-BiLSTM模型进行训练,形成期望的输入输出映射关系,从而预测车辆的行驶轨迹。试验结果表明,1DCNN-BiLSTM相比传统方法能更加准确有效地处理序列数据,对车辆运行轨迹预测的效果也具有较高的鲁棒性。 展开更多
关键词 观测数据 卷积神经网络 双向长短期记忆 时空关系 轨迹预测
在线阅读 下载PDF
采用小波变换和双向长短期记忆网络的脑电睡眠分期模型 被引量:7
10
作者 王天宇 陈晗 +1 位作者 王刚 吴宁 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期104-111,共8页
针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作... 针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作为单个睡眠片段的分期依据,再使用双向长短期记忆网络进一步提取睡眠片段之间的状态转换规则;最后利用深度学习方法建立特征、规则与睡眠阶段的映射,使用数据扩充和两步训练法训练模型,削弱数据不均衡的影响,完成连续片段的睡眠分期。采用SHHS公开数据库的5793名被试者的睡眠脑电数据对该模型进行验证,实验结果表明,睡眠分期准确率达到85.82%,整体F1达到78.39,Kappa系数达到0.799,和现有方法相比性能明显提升。 展开更多
关键词 睡眠分期 脑电信号 连续小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度智能预测 被引量:5
11
作者 郭力 郑良瑞 冯浪 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第3期401-409,共9页
部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向... 部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。 展开更多
关键词 部分稳定氧化锆 磨削声发射 相关性分析 卷积-双向长短期记忆神经网络 表面粗糙度预测
在线阅读 下载PDF
基于注意力与神经网络的视频流行度预测模型
12
作者 马学森 杨智捷 +1 位作者 储昭坤 周天保 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第11期1472-1478,共7页
针对传统预测算法预测精度低及难以处理多变量的时序数据等缺点,文章提出一种采用双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络和时间模式注意力(temporal pattern attention,TPA)机制相结合的视频流行度预测模... 针对传统预测算法预测精度低及难以处理多变量的时序数据等缺点,文章提出一种采用双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络和时间模式注意力(temporal pattern attention,TPA)机制相结合的视频流行度预测模型。双向长短期记忆网络从视频流行度时间序列的正向和反向提取时间特征,时间模式注意力机制从双向长短期记忆网络输出状态的深层特征提取时间模式,有利于视频流行度预测。真实视频数据的实验结果表明,与经典时序预测方法相比,TPA-BiLSTM模型能够有效地降低预测的误差,提高预测的准确性。 展开更多
关键词 流行度预测 多元时间序列 双向长短期记忆(BiLSTM)网络 注意力机制 卷积神经网络(CNN)
在线阅读 下载PDF
卡尔曼滤波器与神经网络串行的轮胎载荷识别模型 被引量:6
13
作者 曾俊玮 季元进 +3 位作者 任利惠 周荣笙 李超 杨兴荣 《振动与冲击》 EI CSCD 北大核心 2023年第11期262-270,294,共10页
轮胎载荷是车辆设计和安全性评估的基础数据,对轮胎进行高精度的载荷识别具有重要意义。针对轮胎载荷直接测量昂贵、复杂的现状以及基于纯物理驱动与纯数据驱动的载荷识别方法的局限性,提出一种物理-数据联合驱动的载荷识别模型。该模... 轮胎载荷是车辆设计和安全性评估的基础数据,对轮胎进行高精度的载荷识别具有重要意义。针对轮胎载荷直接测量昂贵、复杂的现状以及基于纯物理驱动与纯数据驱动的载荷识别方法的局限性,提出一种物理-数据联合驱动的载荷识别模型。该模型由卡尔曼滤波器与神经网络修正模型串行组成,卡尔曼滤波器对载荷进行初步识别,修正模型通过卷积神经网络和长短期记忆网络提取信号的空间和时间特征,预测卡尔曼滤波器的偏差并对识别结果予以修正。以APM300胶轮车辆为例进行载荷识别,结果表明,该串行模式载荷识别模型通过将物理驱动与数据驱动方法有机结合,综合整个系统的规则与经验,有效地克制了参数扰动的影响,提升了载荷识别精度,具有较强的泛化性能,具备一定的工程应用价值。 展开更多
关键词 卡尔曼滤波器 卷积神经网络 长短期记忆网络 物理-数据联合驱动 轮胎载荷识别
在线阅读 下载PDF
基于时空网络的电动汽车充电桩电能表误差估计方法研究
14
作者 戴煊丁 何雨辰 +4 位作者 钱丽娟 张煌辉 邵海明 刘国强 林强 《计量学报》 北大核心 2025年第1期126-132,共7页
智能电表的性能通常会随时间下降,现场检定需要大量人力物力,因此提出了一种基于高速卷积神经网络和双向长短期记忆网络相结合的误差估计方法。首先,针对智能电表采集到的充电设施的数据特性进行预处理,其次基于加入高速网络的卷积模块... 智能电表的性能通常会随时间下降,现场检定需要大量人力物力,因此提出了一种基于高速卷积神经网络和双向长短期记忆网络相结合的误差估计方法。首先,针对智能电表采集到的充电设施的数据特性进行预处理,其次基于加入高速网络的卷积模块提取变量间的空间特征,保留一部分原始信息,再将提取的特征输入双向长短期记忆网络中捕捉时序特征,得到更精确的相对误差。最后在某地的新能源汽车充电站的数据集中进行验证,对比现有的先进模型,实验结果表明文中所提方法在充电桩电能表相对误差估计方面有更高的准确性,设计的三种性能评价指标至少有13.68%以上的提升。 展开更多
关键词 电学计量 智能电表 高速网络 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于CNN-LSTM网络模型的风电功率短期预测研究 被引量:16
15
作者 李艳 彭春华 +1 位作者 傅裕 孙惠娟 《华东交通大学学报》 2020年第4期109-115,共7页
风电功率预测对电力系统的稳定运行与经济调度至关重要。为充分挖掘历史数据中的有效信息以提高风电功率短期预测精度,提出一种基于卷积神经网络(convolution neural network,CNN)和长短期记忆(long short-term memory network,LSTM)网... 风电功率预测对电力系统的稳定运行与经济调度至关重要。为充分挖掘历史数据中的有效信息以提高风电功率短期预测精度,提出一种基于卷积神经网络(convolution neural network,CNN)和长短期记忆(long short-term memory network,LSTM)网络模型的风电功率短期预测方法,利用CNN序列特征提取能力进行有效信息的提取,保留更长的有效记忆信息以解决梯度弥散问题,弥补了LSTM网络模型面对过长序列时出现不稳定与梯度消失现象的不足。用国内某风电场数据进行实验,预测结果表明文中提出的方法与反向传播神经网络和LSTM网络预测方法相比,具有更高的预测精度。 展开更多
关键词 风电功率预测 卷积神经网络 长短期记忆网络 卷积神经网络-长短期记忆网络模型
在线阅读 下载PDF
基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测 被引量:3
16
作者 姜建国 杨效岩 毕洪波 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期462-473,共12页
为提高光伏功率的预测精度,提出一种变分模态分解(VMD)、模糊熵(FE)、卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的光伏功率组合预测模型。该方法首先采用VMD将原始光伏序列数据分解成多个子序列,从而减少随机波动分量和噪声... 为提高光伏功率的预测精度,提出一种变分模态分解(VMD)、模糊熵(FE)、卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的光伏功率组合预测模型。该方法首先采用VMD将原始光伏序列数据分解成多个子序列,从而减少随机波动分量和噪声干扰对预测模型的影响,通过FE对每个子序列进行重组,使用一维CNN的局部连接及权值共享提取不同分量的特征,将CNN输出的特征融合并输入到BiLSTM模型中;利用BiLSTM模型建立历史数据之间的时间特征关系,得到光伏发电功率预测结果。与BiLSTM、CNN-BiLSTM、EEMD-CNN-BiLSTM、VMD-CNN-BiLSTM这4种模型进行比较,该文提出的VMD-FE-CNN-BiLSTM模型在光伏发电功率预测中具有较高的精确度和稳定性,满足光伏发电短期预测的要求。 展开更多
关键词 变分模态分解 卷积神经网络 特征提取 模糊熵 光伏发电功率 预测 双向长短期记忆网络
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法
17
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于CNN-BiLSTM网络模型的无人机飞行质量评价 被引量:3
18
作者 罗晶 高永 +2 位作者 梁葆华 刘军民 惠永昌 《工程数学学报》 CSCD 北大核心 2023年第2期171-189,共19页
为了更好地挖掘无人机飞行轨迹数据中蕴含的有效信息,准确客观地基于轨迹数据对无人机飞行质量进行评价,提出一种融合卷积神经网络(CNN)和双向(Bi-directional)长短期记忆(LSTM)神经网络的CNN-BiLSTM网络模型。首先,利用CNN网络和BiLST... 为了更好地挖掘无人机飞行轨迹数据中蕴含的有效信息,准确客观地基于轨迹数据对无人机飞行质量进行评价,提出一种融合卷积神经网络(CNN)和双向(Bi-directional)长短期记忆(LSTM)神经网络的CNN-BiLSTM网络模型。首先,利用CNN网络和BiLSTM网络分别获取飞行轨迹数据的局部卷积特征和时间特征。然后,将两种特征送入特征融合层,使用融合后的特征进行分类并获得评分标签。针对六个数据集的数值实验表明,模型不仅取得了较好的分类效果,而且具有很好的泛化能力。 展开更多
关键词 无人机质量评价 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
19
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于AMCNN-BiLSTM-CatBoost的滚动轴承故障诊断模型研究
20
作者 袁建华 邵星 +1 位作者 王翠香 皋军 《噪声与振动控制》 北大核心 2025年第2期82-89,共8页
针对现有的轴承故障诊断模型存在的分类精度差、运算效率不高的问题,提出一种基于注意力机制-卷积神经网络-双向长短期记忆网络-CatBoost(AMCNN-BiLSTM-CatBoost)的滚动轴承故障诊断模型。首先,对原始振动信号进行下采样技术处理,然后... 针对现有的轴承故障诊断模型存在的分类精度差、运算效率不高的问题,提出一种基于注意力机制-卷积神经网络-双向长短期记忆网络-CatBoost(AMCNN-BiLSTM-CatBoost)的滚动轴承故障诊断模型。首先,对原始振动信号进行下采样技术处理,然后将经过下采样后的振动信号作为模型输入,通过3个不同的卷积模块提取特征,并使用通道注意力模块对提取的特征进行加权融合,然后将经过加权融合后的数据输入到双向长短期记忆网络中进一步地提取时序特征信息,最后输入到CatBoost中进行故障分类。经过实验表明,该模型不仅能够保证故障诊断的高准确率,还可以大大缩短网络的训练时间。 展开更多
关键词 故障诊断 卷积神经网络 双向长短期记忆网络 注意力机制 CatBoost 轴承
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部