针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo...针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。展开更多
尽管长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolutional neural network,CNN)及其结合体在文本分类任务中取得了很大的突破。但这类模型在对序列信息进行编码时,往往无法同时考虑当前时刻之前和之后的状态,从...尽管长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolutional neural network,CNN)及其结合体在文本分类任务中取得了很大的突破。但这类模型在对序列信息进行编码时,往往无法同时考虑当前时刻之前和之后的状态,从而导致最后分类效果不佳。此外,多版本预训练词向量比单个版本的预训练词向量包含更多的信息。因此提出了一种基于CNN的多通道特征表示文本分类模型(multi-channel feature representation text classification model based on CNN,MC-CNN)。该模型首先通过两个不同的双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)来对不同来源词向量所表示的文本序列进行正逆序上的特征提取,并以此形成多通道特征;然后利用多尺度卷积网络来进一步使得模型能够同时充分考虑到当前时刻之前以及之后的信息,从而更加有效地进行文本分类。MC-CNN在MR、SST-2、TREC、AG、Yelp_F、Yelp_P数据集上分别达到了81.6%、87.4%、98.6%、94.1%、65.9%、96.8%的准确率,实验结果表明本文模型MC-CNN在文本分类任务中具有优异的效果。展开更多
部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向...部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。展开更多
文摘针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。
文摘尽管长短期记忆网络(long short-term memory,LSTM)、卷积神经网络(convolutional neural network,CNN)及其结合体在文本分类任务中取得了很大的突破。但这类模型在对序列信息进行编码时,往往无法同时考虑当前时刻之前和之后的状态,从而导致最后分类效果不佳。此外,多版本预训练词向量比单个版本的预训练词向量包含更多的信息。因此提出了一种基于CNN的多通道特征表示文本分类模型(multi-channel feature representation text classification model based on CNN,MC-CNN)。该模型首先通过两个不同的双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)来对不同来源词向量所表示的文本序列进行正逆序上的特征提取,并以此形成多通道特征;然后利用多尺度卷积网络来进一步使得模型能够同时充分考虑到当前时刻之前以及之后的信息,从而更加有效地进行文本分类。MC-CNN在MR、SST-2、TREC、AG、Yelp_F、Yelp_P数据集上分别达到了81.6%、87.4%、98.6%、94.1%、65.9%、96.8%的准确率,实验结果表明本文模型MC-CNN在文本分类任务中具有优异的效果。
文摘部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。