城市电网在发生N-1故障后,极可能新增运行风险,导致N-1-1时出现大面积停电事故。为管控城市电网N-1后运行风险,该文提出一种改进双智能体竞争双深度Q网络(dueling double deep Q network,D3QN)的城市电网N-1风险管控转供策略。根据风险...城市电网在发生N-1故障后,极可能新增运行风险,导致N-1-1时出现大面积停电事故。为管控城市电网N-1后运行风险,该文提出一种改进双智能体竞争双深度Q网络(dueling double deep Q network,D3QN)的城市电网N-1风险管控转供策略。根据风险管控原则,提出一种无需额外历史数据、考虑备自投装置、单供变电站风险和单供负荷母线风险的N-1场景指标;建立计及动作次序、指标间关系的负荷转供三阶段求解模型。以含预动作-变化探索值选择策略的改进双智能体D3QN方法,将负荷转供分为多个子转供环节学习,使转供思路清晰化,对动作空间进行降维,提高训练寻优效果,得到管控N-1风险的负荷转供策略。通过城市电网多场景算例分析,验证该文模型和方法的有效性。展开更多
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1...On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.展开更多
文摘城市电网在发生N-1故障后,极可能新增运行风险,导致N-1-1时出现大面积停电事故。为管控城市电网N-1后运行风险,该文提出一种改进双智能体竞争双深度Q网络(dueling double deep Q network,D3QN)的城市电网N-1风险管控转供策略。根据风险管控原则,提出一种无需额外历史数据、考虑备自投装置、单供变电站风险和单供负荷母线风险的N-1场景指标;建立计及动作次序、指标间关系的负荷转供三阶段求解模型。以含预动作-变化探索值选择策略的改进双智能体D3QN方法,将负荷转供分为多个子转供环节学习,使转供思路清晰化,对动作空间进行降维,提高训练寻优效果,得到管控N-1风险的负荷转供策略。通过城市电网多场景算例分析,验证该文模型和方法的有效性。
基金supported by the National Natural Science Foundation of China(11931009,12271495,11971450,and 12071449)Anhui Initiative in Quantum Information Technologies(AHY150200)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(YSBR-001).
文摘On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.