A millimeter-wave (mmW) broadband dual circularly polarized (dual-CP) antenna with high port isolation is proposed in this paper. The dual-CP performance is realized based on the symmetrical septum circular polarizer ...A millimeter-wave (mmW) broadband dual circularly polarized (dual-CP) antenna with high port isolation is proposed in this paper. The dual-CP performance is realized based on the symmetrical septum circular polarizer based on the gap waveguide (GWG) technology. Two sets of symmetrical septum circular polarizers are used for common aperture combination,achieving the broadband dual-CP characteristics. Taking advantage of GWG structure without good electrical contact, the antenna can also be fabricated and assembled easily in the mmW band. The principle analysis of the antenna is given, and the antenna is simulated and fabricated. The measured results show that the bandwidth for S11lower than-10.7 dB and the axial ratio (AR) lower than 2.90 dB in 75-110 GHz, with realative bandwidth of 38%. Over the frequency band, the gain is higher than 9.16 dBic, and the dual-CP port isolation is greater than32 dB. The proposed antenna with dual-CP and highly isolated in a wide bandwidth range has broad application prospects in the field of mmW communication.展开更多
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p...Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.展开更多
Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an...Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.展开更多
Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involv...Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.展开更多
The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of gr...The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of granular sludge, the characteristics of the granular sludge taken from the two tested laboratory-scale reactors during start-up were studied. The results show that the added external circulation can enhance biomass granulation, accelerate granule development and improve sludge characteristics. At the end of start-up, the granular size of sludge in external circulation-added IC reactor greatly increases with a size distribution much better than that of sludge in IC reactor. The granular sludge originated from external circulationadded IC reactor contains more extracellular polymers and has a greater settling velocity than that from IC reactor. Methanogenic activity of the granular sludge from the external circulationadded IC reactor started 26 d ago reaches 358.23mL·g -1 ·d -1 , 1.66 and 1.20 times as great as that of the sludge from the IC reactor started 26 d and 58 d ago respectively.展开更多
Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me...Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.展开更多
At airports, runway operation is the limiting factor for the overall throughput; specifically the fixed and overly conservative ICAO wake turbulence separation minima. The wake turbulence hazardous flows can dissipate...At airports, runway operation is the limiting factor for the overall throughput; specifically the fixed and overly conservative ICAO wake turbulence separation minima. The wake turbulence hazardous flows can dissipate quicker because of decay due to air turbulence or be transported out of the way on oncoming traffic by cross-wind, yet wake turbulence separation minima do not take into account wind conditions. Indeed, for safety reasons, most airports assume a worst-case scenario and use conservative separations; the interval between aircraft taking off or landing therefore often amounts to several minutes. However, with the aid of accurate wind data and precise measurements of wake vortex by radar sensors, more efficient intervals can be set, particularly when weather conditions are stable. Depending on traffic volume, these adjustments can generate capacity gains, which have major commercial benefits. This paper presents the use of Electronic scanning radar for detecting wake vortices. In this method, the raindrops Doppler spectrogram is used to retrieve the strength of the wake vortex. Numerical simulation are performed to establish an empirical model used during the retrieval method. This paper presents also the results obtained during the trials of the PARIS-CDG data set recorded from October 2014 to November 2015 with an X-band RADAR developed and deployed by THALES.展开更多
A safe,economical treatment of hazardous chromium-bearing vanadate residue(CVR)will significantly benefit the clean production of chromate-bearing salts.This study investigated recovery of sodium vanadate and sodium c...A safe,economical treatment of hazardous chromium-bearing vanadate residue(CVR)will significantly benefit the clean production of chromate-bearing salts.This study investigated recovery of sodium vanadate and sodium chromate from CVR in sodium bicarbonate solution.Results indicate that the stability of calcium vanadate and calcium chromate depends on pH and[HCO3?].CaV2O6?4H2O transforms into CaV2O6?4H2O,CaV2O6?2H2O,CaV2O6,Ca2V2O7?2H2O,and Ca5(VO4)3(OH)when pH increases from 7.51 to 12.32.Increasing pH and reducing CVR dosage improve the vanadate extraction rate,and high V2O5 and Na2Cr2O7?2H2O extraction rates are achieved in dilute NaHCO3 solution.Moreover,addition of NaOH positively contributes to the recovery of vanadate and chromate from CVR.Over 95%V2O5 and Na2Cr2O7?2H2O in CVR can be extracted from 60 g/L NaHCO3 and 30 g/L NaOH solutions at 90°C for 2 h.In order to reduce the hazardous residue containing chromate after recovery of CVR,calcium circulation is presented.Results show that more than 60%lime can be saved with fresh residue addition to remove vanadate from sodium chromate solution due to the active CaCO3.Moreover,no lime is required in removal of vanadate when the roasting residue is added.Therefore,a novel process is developed for utilization of CVR.展开更多
A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced,...A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.展开更多
OBJECTIVE Our previous studies demonstrated that various ingredients from the traditional Chinese medicine(TCM)for promoting blood circulation and removing blood stasis,as exemplified by cryptotanshinone and salvianol...OBJECTIVE Our previous studies demonstrated that various ingredients from the traditional Chinese medicine(TCM)for promoting blood circulation and removing blood stasis,as exemplified by cryptotanshinone and salvianolic acid B,exerted striking effects on modulating angiogenesis and vascular permeability,which suggests that they may be effective in treating vascular leak-driven diseases(e.g.tumor,cerebral cavernous malformation and diabetic retinopathy).However,the lack of reliable and advanced technologies and models sets up difficult hurdles for better understanding the role of TCM for promoting blood circulation and removing blood stasis.To this end,this study is to outline numerous cutting-edge platforms that can be utilized for exploring the function of TCM for promoting blood circulation and removing blood stasis in vascular leak-driven diseases.METHODS Two-photon laser scanning fluorescence microscopy was used to observe the interactions between neutrophils and blood vessels in a real-time manner.Dynamic flow system was employed to mimic the in vivo behaviors of neutrophils.RIP1-Tag5 spontaneous pancreatic cancer model was used to study the function of tumor blood vessels.CCM2ECKO(deletion of CCM2 in endothelial cells)mice were employed to establish the cerebral cavernous malformation(CCM)animal model.Micro-computed tomography(micro-CT)was utilized to assess the CCM lesion.Müller cell-knockout mouse model was used to study the progression of diabetic retinopathy.Vascular permeability in this model was assessed by fluorescein angiography.RESULTS The interactions between neutrophils and endothelial cells involve a series of complicated processes,including rolling,adhesion,intraluminal crawling and transmigration,which were all monitored in vivo by two-photon laser scanning fluorescence microscopy in a real-time manner.Dynamic flow system was capable of recapitulating the biological behaviors of neutrophils in vitro.Tumor vascular function in particular vascular perfusion could be assessed in the RIP1-Tag5 spontaneous pancreatic cancer model.In terms of CCM studies,specific deletion of CCM2 in endothelial cells resulted in the initiation of CCM lesion.The size and number of CCM lesions could be visualized and quantified by micro-CT.Furthermore,the Müller cell-knockout mouse model was able to precisely reflect the clinical symptoms of diabetic retinopathy.Vascular leak could be monitored at different time points using fluorescein angiography.CONCLUSION An array of high technologies and animal models can be used in investigating the occurrence and progression of multiple vascular leak-driven diseases.The pre-clinical and clinical studies of TCM for promoting blood circulation and removing blood stasis provide fundamental support for the application of the above-mentioned platforms,with the purpose of uncovering the scientific basis of TCM for promoting blood circulation and removing blood stasis.展开更多
The summer and winter circulations in the South China Sea (SCS) including the surface elevation and water temperature are simulated using the model described by Cai and Li (1996) with the monthly mean wind stress and ...The summer and winter circulations in the South China Sea (SCS) including the surface elevation and water temperature are simulated using the model described by Cai and Li (1996) with the monthly mean wind stress and air temperature field at the 1000 mb level from the European Centre for Medium-Range Weather Forecasts as inputs. The boundary conditions at Bashi Channel and Taiwan Strait are taken from the simulation results of the Kuroshio using the same numerical model with a grid size of 0.5°×0.5° and the results of Cai and Li (1996) as boundary conditions. The computational domain for the present paper is between 100°E and 123°E and between 4.5°N and 27°N. The horizontal resolution is 0.25°×0.25° and the vertical variations of the velocity components are resolved by 6 layers The computed steady flow, temperature and elevation fields are consistent with the corresponding fields observed. In particular, the temperature and elevation fields of the South China Sea Warm Current (SCSWC) have been successfully simulated. The paths of the branch of the Kuroshio entering the South China Sea (SCSBK) through Bashi Channel in winter and summer are discussed It is found that the SCSBK flows southward to the southern SCS from the coast of the Guangdong Province. A portion of the SCSBK returns to the Bashi Channel and subdivides again in deep waters in winter with a branch flows to the south along the coast of the Philippines instead of flowing back to the Pacific In addition, our results confirm the existence of a eastward current to the northeast of Dongsha in summer with the Kuroshio as its source as suggested by Huang et al. Since the value of the eddy viscosity adopted for the simulation of the Kuroshio is on the high side, resulting in a weaker west boundary current in the western Pacific as the boundary conditions for the present simulations, some deviations from the actual situations are expected although the results are in general consistent with observations.展开更多
Objective The detection of RNA single nucleotide polymorphism(SNP)is of great importance due to their association with protein expression related to various diseases and drug responses.At present,splintR ligase-assist...Objective The detection of RNA single nucleotide polymorphism(SNP)is of great importance due to their association with protein expression related to various diseases and drug responses.At present,splintR ligase-assisted methods are important approaches for RNA direct detection,but its specificity will be limited when the fidelity of ligases is not ideal.The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection.Methods In this study,a dualcompetitive-padlock-probe(DCPLP)assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation.To verify the method,we employed dual competitive padlock probe-mediated rolling circle amplification(DCPLP-RCA)to genotype the CYP2C9 gene.Results The specificity was well improved through the competition and strand displacement of dual padlock probe,with an 83.26%reduction in nonspecific signal.By detecting synthetic RNA samples,the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L.Furthermore,clinical samples were applied to the method to evaluate its performance,and the genotyping results were consistent with those obtained using the qPCR method.Conclusion This study has successfully established a highly specific direct RNA SNP detection method,and provided a novel avenue for accurate identification of various types of RNAs.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Efficient and reliable removal of cellulose,hemicellulose and lignin,that are the major organic pollutants in the wastewater from regenerated fiber,is critically important to prevent toxicity discharge.Low-and high-pH...Efficient and reliable removal of cellulose,hemicellulose and lignin,that are the major organic pollutants in the wastewater from regenerated fiber,is critically important to prevent toxicity discharge.Low-and high-pH stresses sometimes occur in the effluent treatment systems due to the use of a large amount of acid and alkaline in the pulping process.Using flat separation method to select high-yield strains from bio-contact oxidation basin,seeing configuration of the strains and doing some physiological experiments,we found that the strains contain two kinds of main bacteria,Zoogloea sp.and Pseudomona sp.We also discovered the best growing time by spectrophotometer.The best growing time is at 0~32h,the logarithmic phase is about at 12~32h,and the stable growth phase is about 32~60h.Furthermore,we concluded that the disposal ability of high-yield strain is better than the ordinary one by doing parallel experiment.Through orthogonal test we also confirmed that the best growing temperature and pH value are 29℃and 7.3 respectively.The COD removal rate is about 93% when the biomembrane is in good condition.展开更多
The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,w...The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
This essay examines current-event plays( shishiju 时事剧) and their social functions in late Ming China. Drawing on awide range or primary sources and built on secondary scholarship on information history,the essay of...This essay examines current-event plays( shishiju 时事剧) and their social functions in late Ming China. Drawing on awide range or primary sources and built on secondary scholarship on information history,the essay offered a complete picture of the booming,features,social functions and the decline of the current-event plays. The essay argues that many current-event plays addressed on credibility,timeliness and easy accessibility,which enabled current-event plays to play an important role in information circulation. This essay further exposes the current-event plays not only opened a forum for public discussion but also influenced public opinions greatly from literate elites to the masses in Ming China. Through analyzing current-event plays in the context of Ming society,this essay expands the realm of studying information history.展开更多
文摘A millimeter-wave (mmW) broadband dual circularly polarized (dual-CP) antenna with high port isolation is proposed in this paper. The dual-CP performance is realized based on the symmetrical septum circular polarizer based on the gap waveguide (GWG) technology. Two sets of symmetrical septum circular polarizers are used for common aperture combination,achieving the broadband dual-CP characteristics. Taking advantage of GWG structure without good electrical contact, the antenna can also be fabricated and assembled easily in the mmW band. The principle analysis of the antenna is given, and the antenna is simulated and fabricated. The measured results show that the bandwidth for S11lower than-10.7 dB and the axial ratio (AR) lower than 2.90 dB in 75-110 GHz, with realative bandwidth of 38%. Over the frequency band, the gain is higher than 9.16 dBic, and the dual-CP port isolation is greater than32 dB. The proposed antenna with dual-CP and highly isolated in a wide bandwidth range has broad application prospects in the field of mmW communication.
基金supported by Guangdong Natural Science Foundation(2019A1515011622)Guangdong Provincial Laboratory of Southern Marine Science and Engineering (Zhuhai)(SML2021SP407)。
文摘Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz.
文摘Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
基金supported by the National Natural Science Foundation of China(No.22375021,22235003,22261132516&22205021)the BIT Research and Innovation 265 Promoting Project(Grant No.2023YCXZ017)。
文摘Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.
文摘The start-up of external circulationadded internal circulation(IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of granular sludge, the characteristics of the granular sludge taken from the two tested laboratory-scale reactors during start-up were studied. The results show that the added external circulation can enhance biomass granulation, accelerate granule development and improve sludge characteristics. At the end of start-up, the granular size of sludge in external circulation-added IC reactor greatly increases with a size distribution much better than that of sludge in IC reactor. The granular sludge originated from external circulationadded IC reactor contains more extracellular polymers and has a greater settling velocity than that from IC reactor. Methanogenic activity of the granular sludge from the external circulationadded IC reactor started 26 d ago reaches 358.23mL·g -1 ·d -1 , 1.66 and 1.20 times as great as that of the sludge from the IC reactor started 26 d and 58 d ago respectively.
基金Project(51275542) supported by the National Natural Science Foundation of Chinaproject(CDJXS12110010) supported by the Fundamental Research Funds for the Central Universities of China
文摘Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.
文摘At airports, runway operation is the limiting factor for the overall throughput; specifically the fixed and overly conservative ICAO wake turbulence separation minima. The wake turbulence hazardous flows can dissipate quicker because of decay due to air turbulence or be transported out of the way on oncoming traffic by cross-wind, yet wake turbulence separation minima do not take into account wind conditions. Indeed, for safety reasons, most airports assume a worst-case scenario and use conservative separations; the interval between aircraft taking off or landing therefore often amounts to several minutes. However, with the aid of accurate wind data and precise measurements of wake vortex by radar sensors, more efficient intervals can be set, particularly when weather conditions are stable. Depending on traffic volume, these adjustments can generate capacity gains, which have major commercial benefits. This paper presents the use of Electronic scanning radar for detecting wake vortices. In this method, the raindrops Doppler spectrogram is used to retrieve the strength of the wake vortex. Numerical simulation are performed to establish an empirical model used during the retrieval method. This paper presents also the results obtained during the trials of the PARIS-CDG data set recorded from October 2014 to November 2015 with an X-band RADAR developed and deployed by THALES.
基金Project(51274242)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan of Central South University,China
文摘A safe,economical treatment of hazardous chromium-bearing vanadate residue(CVR)will significantly benefit the clean production of chromate-bearing salts.This study investigated recovery of sodium vanadate and sodium chromate from CVR in sodium bicarbonate solution.Results indicate that the stability of calcium vanadate and calcium chromate depends on pH and[HCO3?].CaV2O6?4H2O transforms into CaV2O6?4H2O,CaV2O6?2H2O,CaV2O6,Ca2V2O7?2H2O,and Ca5(VO4)3(OH)when pH increases from 7.51 to 12.32.Increasing pH and reducing CVR dosage improve the vanadate extraction rate,and high V2O5 and Na2Cr2O7?2H2O extraction rates are achieved in dilute NaHCO3 solution.Moreover,addition of NaOH positively contributes to the recovery of vanadate and chromate from CVR.Over 95%V2O5 and Na2Cr2O7?2H2O in CVR can be extracted from 60 g/L NaHCO3 and 30 g/L NaOH solutions at 90°C for 2 h.In order to reduce the hazardous residue containing chromate after recovery of CVR,calcium circulation is presented.Results show that more than 60%lime can be saved with fresh residue addition to remove vanadate from sodium chromate solution due to the active CaCO3.Moreover,no lime is required in removal of vanadate when the roasting residue is added.Therefore,a novel process is developed for utilization of CVR.
基金supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2009-2010
文摘A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.
文摘OBJECTIVE Our previous studies demonstrated that various ingredients from the traditional Chinese medicine(TCM)for promoting blood circulation and removing blood stasis,as exemplified by cryptotanshinone and salvianolic acid B,exerted striking effects on modulating angiogenesis and vascular permeability,which suggests that they may be effective in treating vascular leak-driven diseases(e.g.tumor,cerebral cavernous malformation and diabetic retinopathy).However,the lack of reliable and advanced technologies and models sets up difficult hurdles for better understanding the role of TCM for promoting blood circulation and removing blood stasis.To this end,this study is to outline numerous cutting-edge platforms that can be utilized for exploring the function of TCM for promoting blood circulation and removing blood stasis in vascular leak-driven diseases.METHODS Two-photon laser scanning fluorescence microscopy was used to observe the interactions between neutrophils and blood vessels in a real-time manner.Dynamic flow system was employed to mimic the in vivo behaviors of neutrophils.RIP1-Tag5 spontaneous pancreatic cancer model was used to study the function of tumor blood vessels.CCM2ECKO(deletion of CCM2 in endothelial cells)mice were employed to establish the cerebral cavernous malformation(CCM)animal model.Micro-computed tomography(micro-CT)was utilized to assess the CCM lesion.Müller cell-knockout mouse model was used to study the progression of diabetic retinopathy.Vascular permeability in this model was assessed by fluorescein angiography.RESULTS The interactions between neutrophils and endothelial cells involve a series of complicated processes,including rolling,adhesion,intraluminal crawling and transmigration,which were all monitored in vivo by two-photon laser scanning fluorescence microscopy in a real-time manner.Dynamic flow system was capable of recapitulating the biological behaviors of neutrophils in vitro.Tumor vascular function in particular vascular perfusion could be assessed in the RIP1-Tag5 spontaneous pancreatic cancer model.In terms of CCM studies,specific deletion of CCM2 in endothelial cells resulted in the initiation of CCM lesion.The size and number of CCM lesions could be visualized and quantified by micro-CT.Furthermore,the Müller cell-knockout mouse model was able to precisely reflect the clinical symptoms of diabetic retinopathy.Vascular leak could be monitored at different time points using fluorescein angiography.CONCLUSION An array of high technologies and animal models can be used in investigating the occurrence and progression of multiple vascular leak-driven diseases.The pre-clinical and clinical studies of TCM for promoting blood circulation and removing blood stasis provide fundamental support for the application of the above-mentioned platforms,with the purpose of uncovering the scientific basis of TCM for promoting blood circulation and removing blood stasis.
文摘The summer and winter circulations in the South China Sea (SCS) including the surface elevation and water temperature are simulated using the model described by Cai and Li (1996) with the monthly mean wind stress and air temperature field at the 1000 mb level from the European Centre for Medium-Range Weather Forecasts as inputs. The boundary conditions at Bashi Channel and Taiwan Strait are taken from the simulation results of the Kuroshio using the same numerical model with a grid size of 0.5°×0.5° and the results of Cai and Li (1996) as boundary conditions. The computational domain for the present paper is between 100°E and 123°E and between 4.5°N and 27°N. The horizontal resolution is 0.25°×0.25° and the vertical variations of the velocity components are resolved by 6 layers The computed steady flow, temperature and elevation fields are consistent with the corresponding fields observed. In particular, the temperature and elevation fields of the South China Sea Warm Current (SCSWC) have been successfully simulated. The paths of the branch of the Kuroshio entering the South China Sea (SCSBK) through Bashi Channel in winter and summer are discussed It is found that the SCSBK flows southward to the southern SCS from the coast of the Guangdong Province. A portion of the SCSBK returns to the Bashi Channel and subdivides again in deep waters in winter with a branch flows to the south along the coast of the Philippines instead of flowing back to the Pacific In addition, our results confirm the existence of a eastward current to the northeast of Dongsha in summer with the Kuroshio as its source as suggested by Huang et al. Since the value of the eddy viscosity adopted for the simulation of the Kuroshio is on the high side, resulting in a weaker west boundary current in the western Pacific as the boundary conditions for the present simulations, some deviations from the actual situations are expected although the results are in general consistent with observations.
文摘Objective The detection of RNA single nucleotide polymorphism(SNP)is of great importance due to their association with protein expression related to various diseases and drug responses.At present,splintR ligase-assisted methods are important approaches for RNA direct detection,but its specificity will be limited when the fidelity of ligases is not ideal.The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection.Methods In this study,a dualcompetitive-padlock-probe(DCPLP)assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation.To verify the method,we employed dual competitive padlock probe-mediated rolling circle amplification(DCPLP-RCA)to genotype the CYP2C9 gene.Results The specificity was well improved through the competition and strand displacement of dual padlock probe,with an 83.26%reduction in nonspecific signal.By detecting synthetic RNA samples,the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L.Furthermore,clinical samples were applied to the method to evaluate its performance,and the genotyping results were consistent with those obtained using the qPCR method.Conclusion This study has successfully established a highly specific direct RNA SNP detection method,and provided a novel avenue for accurate identification of various types of RNAs.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
文摘Efficient and reliable removal of cellulose,hemicellulose and lignin,that are the major organic pollutants in the wastewater from regenerated fiber,is critically important to prevent toxicity discharge.Low-and high-pH stresses sometimes occur in the effluent treatment systems due to the use of a large amount of acid and alkaline in the pulping process.Using flat separation method to select high-yield strains from bio-contact oxidation basin,seeing configuration of the strains and doing some physiological experiments,we found that the strains contain two kinds of main bacteria,Zoogloea sp.and Pseudomona sp.We also discovered the best growing time by spectrophotometer.The best growing time is at 0~32h,the logarithmic phase is about at 12~32h,and the stable growth phase is about 32~60h.Furthermore,we concluded that the disposal ability of high-yield strain is better than the ordinary one by doing parallel experiment.Through orthogonal test we also confirmed that the best growing temperature and pH value are 29℃and 7.3 respectively.The COD removal rate is about 93% when the biomembrane is in good condition.
基金Project(2023JJ40759)supported by the Natural Science Foundation of Hunan Province,China。
文摘The irreversible phase transition and interface side reactions during the cycling process severely limit the large scale application of nickel-rich layered oxides Li[Ni_(x)Co_(y)Mn_(1−x−y)]O_(2)(NCM,x>0.8).Herein,we have designed LiNi_(0.8)Co_(0.1)Mn 0.1 O_(2)cathodes modified by Nb/Al co-doping and LiNbO_(3)/LiAlO_(2)composite coating.Detailed characterization reveals that Nb/Al co-doping can stabilize the crystal structure of the cathodes and expand the layer spacing of the layered lattice,thereby increasing the diffusion rate and reversibility of Li^(+).And the composite coatings can improve the electrochemical kinetic and inhibit the erosion of acidic substances by hindering direct contact between the cathodes and electrolyte.As a result,the Ni-rich cathodes with dual modification can still exhibit a higher capacity of 184.02 mA·h/g after 100 cycles with a capacity retention of up to 98.1%,and can still release a capacity of 161.6 mA·h/g at a high rate of 7 C,meanwhile,it shows excellent thermal stability compared to bare NCM.This work provides a new perspective for enhancing electrochemical properties of cathodes through integrated strategies.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘This essay examines current-event plays( shishiju 时事剧) and their social functions in late Ming China. Drawing on awide range or primary sources and built on secondary scholarship on information history,the essay offered a complete picture of the booming,features,social functions and the decline of the current-event plays. The essay argues that many current-event plays addressed on credibility,timeliness and easy accessibility,which enabled current-event plays to play an important role in information circulation. This essay further exposes the current-event plays not only opened a forum for public discussion but also influenced public opinions greatly from literate elites to the masses in Ming China. Through analyzing current-event plays in the context of Ming society,this essay expands the realm of studying information history.