针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirica...针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。展开更多
变量预测模型的模式识别方法(Variable predictive model based class discriminate,VPMCD)是一种利用特征值相互内在关系进行模式识别的新方法。论文提出了基于局部均值分解LMD(Local mean decomposition,LMD)能量矩概念,并针对轴承故...变量预测模型的模式识别方法(Variable predictive model based class discriminate,VPMCD)是一种利用特征值相互内在关系进行模式识别的新方法。论文提出了基于局部均值分解LMD(Local mean decomposition,LMD)能量矩概念,并针对轴承故障振动信号特征值的相互内在联系,将LMD能量矩与变量预测模型模式识别相结合,提出了一种轴承故障智能诊断新方法。首先利用LMD方法将复杂非平稳的原始信号分解为若干PF(Product function,PF)分量;然后利用相关分析剔除LMD方法中的虚假PF分量,并提取真实PF分量能量矩组成特征向量来有效地表达故障信息;最后采用VPMCD方法进行轴承故障诊断。通过仿真信号验证了PF能量矩比PF能量更能反映非平稳信号本质特征。轴承故障诊断实验结果表明,论文提出的方法能有效地应用于小样本多分类轴承故障智能诊断。展开更多
文摘针对齿轮故障诊断中采集到的振动信号常伴有噪声干扰且故障特征难以提取的问题,以傅里叶-贝塞尔级数展开(Fourier-Bessel series expansion,FBSE)为基础,提出了一种将FBSE和基于能量的尺度空间经验小波变换(energy scale space empirical wavelet transform,ESEWT)相结合的齿轮振动信号降噪方法,即FBSE-ESEWT。首先,将采集到的齿轮振动信号利用FBSE技术获得其频谱,以替代传统的傅里叶谱,接着凭借能量尺度空间划分法对获取的FBSE频谱进行自适应分割和筛选,以精确定位有效频带的边界点。随后通过构建小波滤波器组得到信号分量并进行重构,以减小噪声和冗余信息干扰;然后,为捕捉到更全面的特征信息将处理后的信号进行广义S变换得到时频图,输入2D卷积神经网络进行故障诊断验证算法可行性。通过对Simulink仿真信号和实际采集信号进行实验,结果表明,相对于原始经验小波变换(EWT)、经验模态分解(EMD)等方法,FBSE-ESEWT具有更好的降噪效果,信噪比提高了13.96 dB,诊断准确率高达98.03%。
文摘变量预测模型的模式识别方法(Variable predictive model based class discriminate,VPMCD)是一种利用特征值相互内在关系进行模式识别的新方法。论文提出了基于局部均值分解LMD(Local mean decomposition,LMD)能量矩概念,并针对轴承故障振动信号特征值的相互内在联系,将LMD能量矩与变量预测模型模式识别相结合,提出了一种轴承故障智能诊断新方法。首先利用LMD方法将复杂非平稳的原始信号分解为若干PF(Product function,PF)分量;然后利用相关分析剔除LMD方法中的虚假PF分量,并提取真实PF分量能量矩组成特征向量来有效地表达故障信息;最后采用VPMCD方法进行轴承故障诊断。通过仿真信号验证了PF能量矩比PF能量更能反映非平稳信号本质特征。轴承故障诊断实验结果表明,论文提出的方法能有效地应用于小样本多分类轴承故障智能诊断。