期刊文献+

基于EMD和Teager能量的滚动轴承故障诊断 被引量:1

Roller Bearing Fault Diagnosis Based on EMD and Teager Energy
在线阅读 下载PDF
导出
摘要 对滚动轴承故障信号进行Teager能量谱分析是一种有效的方法,但是Teager能量算子使用对象为单分量信号。根据EMD(Empirical Mode Decomposition)能够自适应地把信号分解成单分量调制信号IMF(Intrinsic Mode Function)的特点,提出了一种基于EMD和Teager能量的故障诊断方法。通过对EMD分解出的与原信号互相关系数最大的分量作Teager能量谱分析进行诊断。分析了滚动轴承故障实验信号,并与信号的直接Teager能量谱作了比较,验证了该方法的有效性。 Teager energy spectrum analysis is an effective method of fault diagnosis for roller bearings,the limitation is that the Teager algorithm should only be applied to single-component signals. The empirical mode decomposition (EMD) method can decompose a signal into intrinsic mode functions (IMF) which are single-component signals. A new fault diagnosis approach of roller bearing based on EMD and Teager energy is presented. It calculates the Teager energy of the high-frequency IMFs derived from EMD and then identify the fault categories through the Frouier transform of the energy signal. The experimental results validated the effectiveness of the proposed method. A comparison was also made with the result of the Teager energy spectrum obtained from the original signal.
作者 肖森 于学兵
出处 《农业装备与车辆工程》 2014年第1期24-27,共4页 Agricultural Equipment & Vehicle Engineering
关键词 滚动轴承 经验模式分解 TEAGER能量算子 故障诊断 roller bearing empirical mode decomposition Teager energy operator fault diagnosis
作者简介 肖森(1988-),男,山东日照人,硕士研究生,主要从事船舶轴功率、振动测量及船用主机废气排放方向的研究.E-mail:xsen98@163.com
  • 相关文献

参考文献13

二级参考文献63

  • 1王延春,谢明,丁康.包络分析方法及其在齿轮故障振动诊断中的应用[J].重庆大学学报(自然科学版),1995,18(1):87-91. 被引量:25
  • 2石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:18
  • 3胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:27
  • 4李辉,郑海起,唐力伟.基于EMD和功率谱的齿轮故障诊断研究[J].振动与冲击,2006,25(1):133-135. 被引量:41
  • 5梅宏斌.滚动轴承振动监测与诊断--理论·方法·系统[M].北京:机械工业出版社,1996.
  • 6Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals [ J ]. Mechanical Systems and Signal Processing, 2000, 14 (5) : 763 - 788.
  • 7Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelet [J]. Mechanical Systems and Signal Processing, 2002,16 (4) : 677 - 694.
  • 8Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proc. R. Soc, 1998,454:903 - 905.
  • 9Dwyer R F. Detection of non-Gaussian signals by frequency domain kurtosis estimation[ C ]. International Conference On Acoustics, Speech, and Signal Processing, Boston, 1983, 607 - 610.
  • 10Antoni J. The spectral kurtosis: A useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006,20:282 - 307.

共引文献589

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部