Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,t...Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.展开更多
To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conduct...To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conducted at 0,1,3,and 5 days before harvest.The appearance,respiration rate,mass-loss rate,electrolyte leakage,glucosinolate,ascorbic acid,total phenol,total flavonoid,total sugar and sucrose contents,and sucrose phosphate synthase(SPS),invertase(INV),sucrose synthase synthesis(SSS)and cleavage(SSC)activities of broccoli samples were observed after 0,2,4,6,8,and 10 days of storage.The results showed that spraying arginine at 5 days preharvest(5-ARG)helped to inhibit broccoli respiration during storage,delay electrolyte leakage,and maintain broccoli color.Furthermore,during the growth stage,total sugar accumulation was higher in the 5-ARG group.In addition,during the storage period,sucrose synthesis was accelerated,while sucrose cleavage was inhibited,resulting in more sucrose retention in postharvest broccoli.In conclusion,5-ARG resulted in the accumulation of more nutrients during the growth process and effectively delayed the quality decline during storage,thereby prolonging the shelf life of broccoli.Therefore,this study provides a theoretical basis for improving postharvest storage characteristics of broccoli through preharvest treatments.展开更多
Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morpho...Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morphology simulation with an enhanced agglomerate model to establish a mathematical framework elucidating pore evolution,Pt utilization,and oxygen transport in catalyst layers.Results demonstrate dominant local mass transport resistance governed by three factors:(1)active site density dictating oxygen flux;(2)ionomer film thickness defining shortest transport path;(3)ionomer-to-Pt surface area ratio modulating practical pathway length.At low ionomer-to-carbon(I/C)ratios,limited active sites elevate resistance(Factor 1 dominant).Higher I/C ratios improve the ionomer coverage but eventually thicken ionomer films,degrading transport(Factors 2–3 dominant).The results indicate that larger carbon particles result in a net increase in local transport resistance by reducing external surface area and increasing ionomer thickness.As the proportion of Pt situated in nanopores or the Pt mass fraction increases,elevated Pt density inside the nanopores exacerbates pore blockage.This leads to the increased transport resistance by reducing active sites,and increasing ionomer thickness and surface area.Lower Pt loading linearly intensifies oxygen flux resistance.The model underscores the necessity to optimize support morphology,Pt distribution,and ionomer content to prevent pore blockage while balancing catalytic activity and transport efficiency.These insights provide a systematic approach for designing high-performance mesoporous carbon catalysts.展开更多
This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals noth...This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.展开更多
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir...Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.展开更多
Metal-organic framework(MOF)nanostructures have emerged as a prominent class of materials in the advancement of electrochemical sensors.The rational design of bimetallic MOF-functionalized microelectrode is of importa...Metal-organic framework(MOF)nanostructures have emerged as a prominent class of materials in the advancement of electrochemical sensors.The rational design of bimetallic MOF-functionalized microelectrode is of importance for improv-ing the electrochemical performance but still in great challenge.In this work,the bimetallic FeCo-MOF nanostructures were assembled onto a gold disk ultramicroelectrode(Au UME,5.2μm in diameter)via an in-situ electrodeposition method,which enhanced the sensitive detection of epinephrine(EP).The in-situ electrodeposited FeCo-MOF exhibited a character-istic nanoflower-like morphology and was uniformly dispersed on the Au UME.The FeCo-MOF/Au UME demonstrated excellent electrochemical performance on the detection of EP with a high sensitivity of 36.93μA·μmol^(-1)·L·cm^(-2)and a low detection limit of 1.28μmol·L^(-1).It can be attributed to the nonlinear diffusion of EP onto the ultra-micro working substrate,coupled with synergistical catalytic activity of the bimetallic Fe,Co within MOF structure.Furthermore,the FeCo-MOF/Au UME has been successful applied to the analysis of EP in human serum samples,yielding high recovery rates.These results not only contribute to the expansion of the research area of electrochemical sensors,but also provide novel insights and directions into the development of high-performance MOF-based electrochemical sensors.展开更多
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si...Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.展开更多
For every integer 4≤d≤11,an explicit construction of infinite families of 2d-regular unique-neighbor expanders is presented,which is a generalization of the 6-regular unique-neighbors initially developed by Alon and...For every integer 4≤d≤11,an explicit construction of infinite families of 2d-regular unique-neighbor expanders is presented,which is a generalization of the 6-regular unique-neighbors initially developed by Alon and Capalbo.Additionally,for values of d greater than 11,a sufficient condition is established for employing the same construction method.Our construction method involves the“line product”of large bipartite Ramanujan graphs and a sufficiently good unique-neighbor expander(a small gadget).展开更多
Four new coordination polymers,{[Cd(mbtx)(4OHphCOO)]NO_(3)}n(1),{[Zn(mbtx)(1,4-bdc)_(0.5)(H_(2)O)_(2)]·(1,4-bdc)_(0.5)·4H_(2)O}n(2),{[Cd2(mbtx)(5NO_(2)-bdc)_(2)(H_(2)O)_(3)]·4.5H_(2)O}n(3),and{[Zn(H_(2)...Four new coordination polymers,{[Cd(mbtx)(4OHphCOO)]NO_(3)}n(1),{[Zn(mbtx)(1,4-bdc)_(0.5)(H_(2)O)_(2)]·(1,4-bdc)_(0.5)·4H_(2)O}n(2),{[Cd2(mbtx)(5NO_(2)-bdc)_(2)(H_(2)O)_(3)]·4.5H_(2)O}n(3),and{[Zn(H_(2)O)6][Zn_(2)(mbtx)_(2)(btc)_(2)(H_(2)O)_(4)]·2H_(2)O}n(4)(mbtx=1,3-bis(4H-1,2,4-triazole)benzene,4OHphCOO-=p-hydroxybenzoate,1,4-bdc2-=1,4-benzenedicarboxylate,5NO_(2)-bdc2-=5-nitro-isophthalate,btc3-=1,3,5-benzenetricarboxylate),were synthesized under room temperature condition and characterized by single-crystal X-ray diffraction,elemental analyses,and powder X-ray diffraction.Single-crystal X-ray structural analysis shows that complexes 1 and 3 are 2D networks.In 1,the adjacent 2D networks are linked to a 3D network byπ-πstacking interaction.2 and 4 exhibit 1D chains,and the 1D chains are connected into a 3D network byπ-πstacking interaction and intermolecular hydrogen bond.Luminescence and thermogravimetric analysis of the four complexes were discussed.CCDC:2416406,1;2416407,2;2416408,3;2416409,4.展开更多
In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still rel...In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.展开更多
An evolution inequality of Sobolev type involving a nonlinear convolution term is considered.By using the nonlinear capacity method and the contradiction argument,the non-existence of the nontrivial local weak solutio...An evolution inequality of Sobolev type involving a nonlinear convolution term is considered.By using the nonlinear capacity method and the contradiction argument,the non-existence of the nontrivial local weak solution is proved.展开更多
Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at hig...Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.展开更多
Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq...Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.展开更多
Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrat...Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrates,and each substrate may need a different way of transferring the 2D material onto it.Problems such as local stress concentrations,an uneven surface tension,inconsistent adhesion,mechanical damage and contamination during the transfer can adversely affect the quality and properties of the transferred material.Therefore,how to improve the integrity,flatness and cleanness of large area 2D materials is a challenge.In order to achieve high-quality transfer,the main concern is to control the interface adhesion between the substrate,the 2D material and the transfer medium.This review focuses on this topic,and finally,in order to promote the industrial use of large area 2D materials,provides a recipe for this transfer process based on the requirements of the application,and points out the current problems and directions for future development.展开更多
We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisti...We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.展开更多
基金Supported by Jilin Provincial Scientific and Technological Development Program(20230508109RC,20230201051GX,20220201091GX)National Natural Science Foundation of China(62035013,61275235)。
文摘Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.
文摘To determine the effects of preharvest arginine spraying on the nutritional level of broccoli and the mechanism of action of arginine in improving the storage quality of broccoli,arginine spraying(5 mmol/L)was conducted at 0,1,3,and 5 days before harvest.The appearance,respiration rate,mass-loss rate,electrolyte leakage,glucosinolate,ascorbic acid,total phenol,total flavonoid,total sugar and sucrose contents,and sucrose phosphate synthase(SPS),invertase(INV),sucrose synthase synthesis(SSS)and cleavage(SSC)activities of broccoli samples were observed after 0,2,4,6,8,and 10 days of storage.The results showed that spraying arginine at 5 days preharvest(5-ARG)helped to inhibit broccoli respiration during storage,delay electrolyte leakage,and maintain broccoli color.Furthermore,during the growth stage,total sugar accumulation was higher in the 5-ARG group.In addition,during the storage period,sucrose synthesis was accelerated,while sucrose cleavage was inhibited,resulting in more sucrose retention in postharvest broccoli.In conclusion,5-ARG resulted in the accumulation of more nutrients during the growth process and effectively delayed the quality decline during storage,thereby prolonging the shelf life of broccoli.Therefore,this study provides a theoretical basis for improving postharvest storage characteristics of broccoli through preharvest treatments.
基金supported by the Program of Ministry of Science and Technology of China(No.2023YFB2504200)support of Shanghai Rising-Star Program(Grant No.24QB2703200)the Major Science and Technology Projects of Yunnan Province(No.202302AH360001).
文摘Mesoporous carbon supports mitigate platinum(Pt)sulfonic poisoning through nanopore-confined Pt deposition,yet their morphological impacts on oxygen transport remain unclear.This study integrates carbon support morphology simulation with an enhanced agglomerate model to establish a mathematical framework elucidating pore evolution,Pt utilization,and oxygen transport in catalyst layers.Results demonstrate dominant local mass transport resistance governed by three factors:(1)active site density dictating oxygen flux;(2)ionomer film thickness defining shortest transport path;(3)ionomer-to-Pt surface area ratio modulating practical pathway length.At low ionomer-to-carbon(I/C)ratios,limited active sites elevate resistance(Factor 1 dominant).Higher I/C ratios improve the ionomer coverage but eventually thicken ionomer films,degrading transport(Factors 2–3 dominant).The results indicate that larger carbon particles result in a net increase in local transport resistance by reducing external surface area and increasing ionomer thickness.As the proportion of Pt situated in nanopores or the Pt mass fraction increases,elevated Pt density inside the nanopores exacerbates pore blockage.This leads to the increased transport resistance by reducing active sites,and increasing ionomer thickness and surface area.Lower Pt loading linearly intensifies oxygen flux resistance.The model underscores the necessity to optimize support morphology,Pt distribution,and ionomer content to prevent pore blockage while balancing catalytic activity and transport efficiency.These insights provide a systematic approach for designing high-performance mesoporous carbon catalysts.
基金National Key Research and Development Program of China(2021YFB3101402)National Natural Science Foundation of China(62202294)。
文摘This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.
文摘Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.
基金support from the National Key Research and Development Program of China(2021YFB3201400,2021YFB3201401,2020YFC1908602)the National Natural Science Foundation of China(21904001 and 61774159)+1 种基金the Anhui Provincial Natural Science Foundation(2008085QF288)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Anhui Province(2020LCX032).
文摘Metal-organic framework(MOF)nanostructures have emerged as a prominent class of materials in the advancement of electrochemical sensors.The rational design of bimetallic MOF-functionalized microelectrode is of importance for improv-ing the electrochemical performance but still in great challenge.In this work,the bimetallic FeCo-MOF nanostructures were assembled onto a gold disk ultramicroelectrode(Au UME,5.2μm in diameter)via an in-situ electrodeposition method,which enhanced the sensitive detection of epinephrine(EP).The in-situ electrodeposited FeCo-MOF exhibited a character-istic nanoflower-like morphology and was uniformly dispersed on the Au UME.The FeCo-MOF/Au UME demonstrated excellent electrochemical performance on the detection of EP with a high sensitivity of 36.93μA·μmol^(-1)·L·cm^(-2)and a low detection limit of 1.28μmol·L^(-1).It can be attributed to the nonlinear diffusion of EP onto the ultra-micro working substrate,coupled with synergistical catalytic activity of the bimetallic Fe,Co within MOF structure.Furthermore,the FeCo-MOF/Au UME has been successful applied to the analysis of EP in human serum samples,yielding high recovery rates.These results not only contribute to the expansion of the research area of electrochemical sensors,but also provide novel insights and directions into the development of high-performance MOF-based electrochemical sensors.
文摘Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.
文摘For every integer 4≤d≤11,an explicit construction of infinite families of 2d-regular unique-neighbor expanders is presented,which is a generalization of the 6-regular unique-neighbors initially developed by Alon and Capalbo.Additionally,for values of d greater than 11,a sufficient condition is established for employing the same construction method.Our construction method involves the“line product”of large bipartite Ramanujan graphs and a sufficiently good unique-neighbor expander(a small gadget).
文摘Four new coordination polymers,{[Cd(mbtx)(4OHphCOO)]NO_(3)}n(1),{[Zn(mbtx)(1,4-bdc)_(0.5)(H_(2)O)_(2)]·(1,4-bdc)_(0.5)·4H_(2)O}n(2),{[Cd2(mbtx)(5NO_(2)-bdc)_(2)(H_(2)O)_(3)]·4.5H_(2)O}n(3),and{[Zn(H_(2)O)6][Zn_(2)(mbtx)_(2)(btc)_(2)(H_(2)O)_(4)]·2H_(2)O}n(4)(mbtx=1,3-bis(4H-1,2,4-triazole)benzene,4OHphCOO-=p-hydroxybenzoate,1,4-bdc2-=1,4-benzenedicarboxylate,5NO_(2)-bdc2-=5-nitro-isophthalate,btc3-=1,3,5-benzenetricarboxylate),were synthesized under room temperature condition and characterized by single-crystal X-ray diffraction,elemental analyses,and powder X-ray diffraction.Single-crystal X-ray structural analysis shows that complexes 1 and 3 are 2D networks.In 1,the adjacent 2D networks are linked to a 3D network byπ-πstacking interaction.2 and 4 exhibit 1D chains,and the 1D chains are connected into a 3D network byπ-πstacking interaction and intermolecular hydrogen bond.Luminescence and thermogravimetric analysis of the four complexes were discussed.CCDC:2416406,1;2416407,2;2416408,3;2416409,4.
基金2024 Science and Technology Commissioner Service Group's Emergency Science and Technology Research Project for Wind Disaster Relief in Hainan Province(ZDYF2024YJGG002-8)China Huaneng Group Co.,Ltd.Headquarters Technology Project,Optimization of Photovoltaic Vegetable Greenhouse Structure and Research on Planting Agronomy in Tropical Regions(HNKJ22-HF77)。
文摘In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.
基金Supported by Scientific Research Fund of Hunan Provincial Education Departmen(t23A0361)。
文摘An evolution inequality of Sobolev type involving a nonlinear convolution term is considered.By using the nonlinear capacity method and the contradiction argument,the non-existence of the nontrivial local weak solution is proved.
文摘Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.
基金partially supported by the National Natural Science Foundation of China(22479022)Liaoning Revitalization Talents Program(XLYC2007129)。
文摘Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.
基金the National Key R&D Program of China(2022YFA1505200)the National Natural Science Foundation of China(22472140,22021001)the Fundamental Research Funds for the Central Universities(20720210017 and 20720210009)。
文摘Large-area two-dimensional(2D)materials,such as graphene,MoS_(2),WS_(2),h-BN,black phosphorus,and MXenes,are a class of advanced materials with many possible applications.Different applications need different substrates,and each substrate may need a different way of transferring the 2D material onto it.Problems such as local stress concentrations,an uneven surface tension,inconsistent adhesion,mechanical damage and contamination during the transfer can adversely affect the quality and properties of the transferred material.Therefore,how to improve the integrity,flatness and cleanness of large area 2D materials is a challenge.In order to achieve high-quality transfer,the main concern is to control the interface adhesion between the substrate,the 2D material and the transfer medium.This review focuses on this topic,and finally,in order to promote the industrial use of large area 2D materials,provides a recipe for this transfer process based on the requirements of the application,and points out the current problems and directions for future development.
文摘We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.