Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable thresh...Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.展开更多
In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and imple...In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.展开更多
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that di...In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.展开更多
On-line partial discharge(PD)detection still remains a very challenging task because of the strong electromagnetic interferences.In this paper,a new method of de-noising,using complex Daubechies wavelet(CDW)transform,...On-line partial discharge(PD)detection still remains a very challenging task because of the strong electromagnetic interferences.In this paper,a new method of de-noising,using complex Daubechies wavelet(CDW)transform,has been proposed.It is a relatively recent enhancement to the real-valued wavelet transform because of tow important properties,which are nearly shift-invariant and availability of phase information.Those properties give CDW transform superiority over other real-valued wavelet transform,and then the construction algorithm of CDW is introduced in detail.Secondly,based on the real threshold algorithm of real-valued wavelet transform,complex threshold algorithm is devised.This algorithm take the different characteristics of real part and imaginary part of complex wavelet coefficients into account,it modifies the real and imaginary parts of complex wavelet coefficients respectively.Thirdly,to obtain a real de-noised signal,new combined information series is devised.By applying different combination of real part and imaginary part of de-noised complex signal,a real de-noised signal can be restored with higher peak signal-to-noise ratio(PSNR)and less distortion of original signals.Finally,On-site applications of extracting PD signals from noisy background by the optimal de-noising scheme based on CDW are illustrated.The on-site experimental results show that the optimal de-noising scheme is an effective way to suppress white noise in PD measurement.展开更多
Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After makin...Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After making stationary wavelet transform to an infrared image,denoising is done by the proposed method of double-threshold shrinkage in detail coefficient matrixes that have high noisy intensity.For the approximation coefficient matrix with low noisy intensity,enhancement is done by the proposed method based on histogram.The enhanced image can be got by wavelet coefficient reconstruction.Furthermore,an evaluation criterion of enhancement performance is introduced.The results show that this algorithm ensures target enhancement and restrains additive Gauss white noise effectively.At the same time,its amount of calculation is small and operation speed is fast.展开更多
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(2011-035) supported by Shanxi Province Scholarship Foundation, China+2 种基金Project(20120010) supported by Universities High-tech Foundation Projects, ChinaProject (2013021016-1) supported by the Youth Science and Technology Foundation of Shanxi Province, ChinaProjects(2013011016-1, 2012011014-1) supported by the Natural Science Foundation of Shanxi Province, China
文摘Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.
文摘In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.
文摘In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.
基金Project Supported by National Natural Science Foundation China(50577069), National Grid Company (2004-SGKJ).
文摘On-line partial discharge(PD)detection still remains a very challenging task because of the strong electromagnetic interferences.In this paper,a new method of de-noising,using complex Daubechies wavelet(CDW)transform,has been proposed.It is a relatively recent enhancement to the real-valued wavelet transform because of tow important properties,which are nearly shift-invariant and availability of phase information.Those properties give CDW transform superiority over other real-valued wavelet transform,and then the construction algorithm of CDW is introduced in detail.Secondly,based on the real threshold algorithm of real-valued wavelet transform,complex threshold algorithm is devised.This algorithm take the different characteristics of real part and imaginary part of complex wavelet coefficients into account,it modifies the real and imaginary parts of complex wavelet coefficients respectively.Thirdly,to obtain a real de-noised signal,new combined information series is devised.By applying different combination of real part and imaginary part of de-noised complex signal,a real de-noised signal can be restored with higher peak signal-to-noise ratio(PSNR)and less distortion of original signals.Finally,On-site applications of extracting PD signals from noisy background by the optimal de-noising scheme based on CDW are illustrated.The on-site experimental results show that the optimal de-noising scheme is an effective way to suppress white noise in PD measurement.
基金the Aeronautics Science Foundation of China(20070153005)Astronautics Science Technology Innovation Foundation of China(05C53005)
文摘Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After making stationary wavelet transform to an infrared image,denoising is done by the proposed method of double-threshold shrinkage in detail coefficient matrixes that have high noisy intensity.For the approximation coefficient matrix with low noisy intensity,enhancement is done by the proposed method based on histogram.The enhanced image can be got by wavelet coefficient reconstruction.Furthermore,an evaluation criterion of enhancement performance is introduced.The results show that this algorithm ensures target enhancement and restrains additive Gauss white noise effectively.At the same time,its amount of calculation is small and operation speed is fast.