期刊文献+
共找到2,869篇文章
< 1 2 144 >
每页显示 20 50 100
Study on Power Transformers Fault Diagnosis Based on Wavelet Neural Network and D-S Evidence Theory
1
作者 LIANG Liu-ming CHEN Wei-gen +2 位作者 YUE Yan-feng WEI Chao YANG Jian-feng 《高电压技术》 EI CAS CSCD 北大核心 2008年第12期2694-2700,共7页
>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in re... >Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers. 展开更多
关键词 小波神经网络 D-S证据理论 电力变压器 故障诊断 适应基因算法
在线阅读 下载PDF
Wavelet neural network based fault diagnosis in nonlinear analog circuits 被引量:16
2
作者 Yin Shirong Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期521-526,共6页
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ... The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility. 展开更多
关键词 fault diagnosis nonlinear analog circuits wavelet analysis neural networks.
在线阅读 下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:7
3
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
在线阅读 下载PDF
Wavelet neural network aerodynamic modeling from flight data based on pso algorithm with information sharing and velocity disturbance 被引量:4
4
作者 甘旭升 端木京顺 +1 位作者 孟月波 丛伟 《Journal of Central South University》 SCIE EI CAS 2013年第6期1592-1601,共10页
For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with i... For the accurate description of aerodynamic characteristics for aircraft,a wavelet neural network (WNN) aerodynamic modeling method from flight data,based on improved particle swarm optimization (PSO) algorithm with information sharing strategy and velocity disturbance operator,is proposed.In improved PSO algorithm,an information sharing strategy is used to avoid the premature convergence as much as possible;the velocity disturbance operator is adopted to jump out of this position once falling into the premature convergence.Simulations on lateral and longitudinal aerodynamic modeling for ATTAS (advanced technologies testing aircraft system) indicate that the proposed method can achieve the accuracy improvement of an order of magnitude compared with SPSO-WNN,and can converge to a satisfactory precision by only 60 120 iterations in contrast to SPSO-WNN with 6 times precocities in 200 times repetitive experiments using Morlet and Mexican hat wavelet functions.Furthermore,it is proved that the proposed method is feasible and effective for aerodynamic modeling from flight data. 展开更多
关键词 aerodynamic modeling flight data wavelet neural network particle swarm optimization
在线阅读 下载PDF
No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain 被引量:2
5
作者 YAN Junhua BAI Xuehan +4 位作者 ZHANG Wanyi XIAO Yongqi CHATWIN Chris YOUNG Rupert BIRCH Phil 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期223-237,共15页
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based o... Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method. 展开更多
关键词 image quality assessment (IQA) AdaBoost_BP neural network (ABNN) wavelet transform natural SCENE STATISTICS (NSS) local information ENTROPY
在线阅读 下载PDF
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
6
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting wavelet curse of dimensionality
在线阅读 下载PDF
Wavelet Neural Network for Handwritten Manchu Character Unit Recognition
7
作者 ZHANG Guangyuan LI jingjiao WANG Aixia 《现代电子技术》 2007年第1期118-120,共3页
The Manchu character recognition method based on Manchu character unit is an efficient method.In this method,the recognition accuracy rate of Manchu character unit has great influence on the final recognition result.A... The Manchu character recognition method based on Manchu character unit is an efficient method.In this method,the recognition accuracy rate of Manchu character unit has great influence on the final recognition result.As new approach to solve this problem,a hybrid wavelet neural network scheme has been developed as an assistant method combine with the original combo-distance method.Due to the properties of the wavelet neural network,the training problem can be transformed into a convex optimization process,therefore the global minimum can be obtained and the learning speed is increases.Both the learning samples set and testing samples set are used,experimental results demonstrate the combine method based on the wavelet neural network is more efficient than the single combo-distance method. 展开更多
关键词 小波神经网络 字符单元 满族字符识别法 模式识别
在线阅读 下载PDF
Image Fusion Algorithm Based on Spatial Frequency-Motivated Pulse Coupled Neural Networks in Nonsubsampled Contourlet Transform Domain 被引量:122
8
作者 QU Xiao-Bo YAN Jing-Wen +1 位作者 XIAO Hong-Zhi ZHU Zi-Qian 《自动化学报》 EI CSCD 北大核心 2008年第12期1508-1514,共7页
Nonsubsampled contourlet 变换(NSCT ) 为图象提供灵活 multiresolution, anisotropy,和方向性的扩大。与原来的 contourlet 变换相比,它是移动不变的并且能在奇特附近克服 pseudo-Gibbs 现象。脉搏联合了神经网络(PCNN ) 是一个视... Nonsubsampled contourlet 变换(NSCT ) 为图象提供灵活 multiresolution, anisotropy,和方向性的扩大。与原来的 contourlet 变换相比,它是移动不变的并且能在奇特附近克服 pseudo-Gibbs 现象。脉搏联合了神经网络(PCNN ) 是一个视觉启发外皮的神经网络并且由全球联合和神经原的脉搏同步描绘。它为图象处理被证明合适并且成功地在图象熔化采用。在这份报纸, NSCT 与 PCNN 被联系并且在图象熔化使用了充分利用他们的特征。在 NSCT 领域的空间频率是输入与大开火的时间在 NSCT 领域激发 PCNN 和系数作为熔化图象的系数被选择。试验性的结果证明建议算法超过典型基于小浪,基于 contourlet,基于 PCNN,并且 contourlet-PCNN-based 熔化算法以客观标准和视觉外观。 展开更多
关键词 图像融合算法 空间频率 脉冲耦合神经网络 变换域 自动化系统
在线阅读 下载PDF
融合双向感知Transformer与频率分析策略的图像修复
9
作者 赵芷蔚 樊瑶 +1 位作者 郑黎志 余思运 《计算机应用研究》 北大核心 2025年第3期927-936,共10页
现有图像修复技术通常很难为缺失区域生成视觉上连贯的内容,其原因是高频内容质量下降导致频谱结构的偏差,以及有限的感受野无法有效建模输入特征之间的非局部关系。为解决上述问题,提出一种融合双向感知Transformer与频率分析策略的图... 现有图像修复技术通常很难为缺失区域生成视觉上连贯的内容,其原因是高频内容质量下降导致频谱结构的偏差,以及有限的感受野无法有效建模输入特征之间的非局部关系。为解决上述问题,提出一种融合双向感知Transformer与频率分析策略的图像修复网络(bidirect-aware Transformer and frequency analysis,BAT-Freq)。具体内容包括,设计了双向感知Transformer,用自注意力和n-gram的组合从更大的窗口捕获上下文信息,以全局视角聚合高级图像上下文;同时,提出了频率分析指导网络,利用频率分量来提高图像修复质量,并设计了混合域特征自适应对齐模块,有效地对齐并融合破损区域的混合域特征,提高了模型的细节重建能力。该网络实现空间域与频率域相结合的图像修复。在CelebA-HQ、Place2、Paris StreetView三个数据集上进行了大量的实验,结果表明,PSNR和SSIM分别平均提高了2.804 dB和8.13%,MAE和LPIPS分别平均降低了0.0158和0.0962。实验证明,该方法能够同时考虑语义结构的完善和纹理细节的增强,生成具有逼真感的修复结果。 展开更多
关键词 图像修复 生成对抗网络 小波变换 transformER
在线阅读 下载PDF
基于WTT-iTransformer时序预测的容器群伸缩策略研究
10
作者 陈奇超 叶楠 曹炳尧 《电子测量技术》 北大核心 2025年第12期88-98,共11页
Kubernetes默认的HPA策略因其特有的响应性机制而存在扩缩容滞后的局限。为了提高资源的响应性能和资源利用率,本文引入了基于时序资源负载预测的弹性伸缩策略,预测部分创新得提出了WTT-iTransformer模型对集群资源进行预测。已知iTrans... Kubernetes默认的HPA策略因其特有的响应性机制而存在扩缩容滞后的局限。为了提高资源的响应性能和资源利用率,本文引入了基于时序资源负载预测的弹性伸缩策略,预测部分创新得提出了WTT-iTransformer模型对集群资源进行预测。已知iTransformer不仅在长期序列预测表现优异,还可通过变量序列作为token嵌入获取了多变量间的关联性。本文通过增加了小波变换卷积层WTConv2d和多尺度时间卷积网络的WTT-iTransformer模型可以更精确地从时、频域两方面提取资源时间序列的长期特征与依赖关系,更符合容器使用特征的预测。基于该模型的负载变化预测,能够实现高、低流量发生的初期进行快速扩缩容,以解决反应滞后和资源利用率低的问题。实验结果表明,WTT-iTransformer在训练过程中表现出更好的稳定性和更低的训练误差,能够较为准确地预测集群负载的变化趋势,改进的弹性伸缩策略与Kubernetes传统的HPA相比更加智能、稳定,在负载特征明显、突发性负载较多的场景展现出显著提升,具有广泛的应用潜力。 展开更多
关键词 Kubernetes 时序预测模型WTT-itransformer 负载预测 混合弹性伸缩策略 小波变换卷积 时间卷积网络 itransformer模型
在线阅读 下载PDF
基于平行融合图Transformer的岩爆烈度等级预测 被引量:1
11
作者 高天祥 苏树智 +1 位作者 朱彦敏 樊腾悦 《科学技术与工程》 北大核心 2025年第5期2111-2118,共8页
岩爆是地下深部工程中一种破坏性极强的地质灾害,为准确预测岩爆烈度等级,提出了一种基于平行融合图Transformer(parallel fusion graph Transformer,PFGT)的岩爆烈度等级预测方法。首先,该方法利用岩爆数据在欧氏空间中的相似性结构关... 岩爆是地下深部工程中一种破坏性极强的地质灾害,为准确预测岩爆烈度等级,提出了一种基于平行融合图Transformer(parallel fusion graph Transformer,PFGT)的岩爆烈度等级预测方法。首先,该方法利用岩爆数据在欧氏空间中的相似性结构关系构建图结构数据,并通过多重岩爆判据来约束岩爆数据在欧式空间中结构的畸变构建另一种图结构数据,通过平行训练获得岩爆数据的单尺度特征。其次,该方法设计了一种特征融合图Transformer策略,通过融合基于欧式空间和基于岩爆判据的两种图结构数据特征,获得岩爆数据的多尺度特征。该方法能够同时利用单尺度特征和多尺度特征,增强了数据表示能力,在训练过程中使用Transformer进行特征融合使得模型能够更全面地捕捉岩爆数据的优化特征,提升模型性能。通过与传统神经网络和其他机器学习算法相比,PFGT模型的预测准确率为94.87%,优于其他算法,证明了该算法的有效性,为岩爆等级预测提供了一种新的方法。 展开更多
关键词 图神经网络 岩爆 transformER 等级预测
在线阅读 下载PDF
基于小波域的复数卷积和复数Transformer的轻量级MR图像重建方法
12
作者 张晓华 练秋生 《电子学报》 北大核心 2025年第4期1221-1231,共11页
卷积神经网络能够从大规模数据中学习图像先验信息,在图像处理领域具有优异表现,但局部感受野使其难以捕捉像素间的远程依赖关系. Transformer网络架构具有全局感受野,在自然语言和高级视觉问题上表现出色,但其计算复杂度与图像尺寸的... 卷积神经网络能够从大规模数据中学习图像先验信息,在图像处理领域具有优异表现,但局部感受野使其难以捕捉像素间的远程依赖关系. Transformer网络架构具有全局感受野,在自然语言和高级视觉问题上表现出色,但其计算复杂度与图像尺寸的平方成正比,限制了其在高分辨图像处理任务中的应用.此外,许多MR(Magnetic Resonance)图像重建算法仅使用幅值数据或将实部和虚部分离到两个独立的通道作为网络输入,忽略了复值图像实部和虚部之间的相关性.本文提出基于复数卷积和复数Transformer的混合模块,既能利用卷积神经网络提取的高分辨率空间信息恢复MR图像细节,又能通过自注意力模块获取的全局上下文信息捕获远程特征.基于混合模块,结合小波变换进一步提出基于小波域的复数卷积和复数Transformer的轻量级MR图像重建算法.在Calgary-Campinas和fastMRI两个数据集上的实验结果表明,所提出的模型与四种具有代表性的MR图像重建算法相比,具有更高的重建性能和更少的资源消耗.源代码公开于https://github.com/zhangxh-qhd/WCCTNet. 展开更多
关键词 MR图像重建 小波变换 轻量级网络 复数卷积 复数transformer 感受野
在线阅读 下载PDF
基于ResNet50和视觉Transformer的滚动轴承故障诊断方法
13
作者 史梦瑶 陈志刚 +2 位作者 王衍学 张志昊 魏梓书 《机床与液压》 北大核心 2025年第16期18-26,共9页
针对因数据量少、故障信号非平稳等特点而导致滚动轴承故障诊断分类方法分类准确率不高及模型泛化能力不强等问题,提出一种基于残差神经网络(ResNet50)与视觉变换器(ViT)的滚动轴承故障诊断方法。通过连续小波变换将轴承振动信号转换为... 针对因数据量少、故障信号非平稳等特点而导致滚动轴承故障诊断分类方法分类准确率不高及模型泛化能力不强等问题,提出一种基于残差神经网络(ResNet50)与视觉变换器(ViT)的滚动轴承故障诊断方法。通过连续小波变换将轴承振动信号转换为时频图像,并将其作为ResNet50的输入,以进行隐式特征提取,将其输出作为ViT的输入。ViT将输入的图像特征按预定尺寸划分为块,并线性映射为输入序列,通过自注意力机制将全局图像特征进行集成,以实现故障诊断。为提高模型的效率和精度,在ViT的输入层引入深度可分离卷积层(DSC),通过逐深度卷积和逐点卷积的方式显著减少模型的参数量和计算量。使用华中科技大学(HSUT)的滚动轴承数据集进行验证,模型的诊断准确率达99.73%,能够有效完成对轴承故障类型的分类识别。在不同工况下进行实验验证,与其他深度学习方法相比,文中方法具有更高的诊断精度和更好的泛化性。通过消融实验验证了所提模型能够显著提升诊断准确率、召回率、精确率和F1-score,表明其在滚动轴承故障诊断领域具有良好的应用前景。 展开更多
关键词 连续小波变换 残差神经网络 视觉transformer 轴承 故障诊断
在线阅读 下载PDF
基于Wavelet-LSTM模型的北京空气污染物浓度预测 被引量:11
14
作者 刘炳春 来明昭 +1 位作者 齐鑫 王辉 《环境科学与技术》 CAS CSCD 北大核心 2019年第8期142-149,共8页
文章为了达到精准预测北京市空气污染物浓度目的,应用小波分解变换(wavelet transform)和长短期神经记忆网络(long short-term memory,LSTM)相结合的方法,建立Wavelet-LSTM空气污染物浓度预测模型,对北京市6项空气污染物浓度预测。研究... 文章为了达到精准预测北京市空气污染物浓度目的,应用小波分解变换(wavelet transform)和长短期神经记忆网络(long short-term memory,LSTM)相结合的方法,建立Wavelet-LSTM空气污染物浓度预测模型,对北京市6项空气污染物浓度预测。研究首先通过小波分解变换将日空气污染物浓度的历史时间序列分解为不同频率并重新组合为高维训练数据集合;其次使用高维数据集训练LSTM预测模型,重复试验调整参数,获得最优预测模型。研究结果表明,组合模型对于污染物浓度预测比传统LSTM模型的预测精度和稳定性更高。 展开更多
关键词 长短期神经记忆网络 小波变换 空气污染物浓度 预测
在线阅读 下载PDF
基于小波包变换和Replicator Neural Network的单位置结构损伤检测 被引量:1
15
作者 张祥 陈仁文 《机械强度》 CAS CSCD 北大核心 2020年第3期509-515,共7页
为了实现对结构的损伤检测,提出一种基于小波包变换和Replicator Neural Network(RNN)的单位置结构损伤检测方法。首先采用小波包变换对原始振动响应信号进行分解,计算分解得到的各频带的相对频带能量,这些相对频带能量的分布反映了结... 为了实现对结构的损伤检测,提出一种基于小波包变换和Replicator Neural Network(RNN)的单位置结构损伤检测方法。首先采用小波包变换对原始振动响应信号进行分解,计算分解得到的各频带的相对频带能量,这些相对频带能量的分布反映了结构特性。然后,将健康结构的相对频带能量作为输入训练RNN。最后,利用训练后的网络即可对结构进行实时损伤检测。实验表明,即使在有噪声干扰下,该方法仍然能够检测出结构是否存在损伤。 展开更多
关键词 Replicator neural network 小波包变换 相对频带能量 结构损伤检测
在线阅读 下载PDF
基于两维WAVELET分解的纹理图像分割方法 被引量:3
16
作者 王庆元 赵昕 《西安交通大学学报》 EI CAS CSCD 北大核心 1995年第1期52-58,共7页
提出了一种纹理图像的分割方法,主要利用WAVELET变换的多分辨率分析的特性,通过两维分解抽取图像的纹理特征,并对图像小窗口区域的特征进行聚类,该聚类结果可作为多层BP(Backpropagation)网权值学习的训... 提出了一种纹理图像的分割方法,主要利用WAVELET变换的多分辨率分析的特性,通过两维分解抽取图像的纹理特征,并对图像小窗口区域的特征进行聚类,该聚类结果可作为多层BP(Backpropagation)网权值学习的训练样本,进而利用BP网对各小窗口的特征进行分类以实现纹理图像的分割,实验证明,该方法对于纹理图像具有较好的分割效果。 展开更多
关键词 小波分析 图像分割 纹理分析 神经网络
在线阅读 下载PDF
Applications of Wavelets in 3-D Audio Simulation
17
作者 Zhu, Xiaoguang Hong, Bingrong Wang, Dongmu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第3期74-81,共8页
Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we em... Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation. 展开更多
关键词 Approximation theory Computer simulation Data structures Feedforward neural networks wavelet transforms
在线阅读 下载PDF
基于同步挤压小波变换和Transformer的轴承故障诊断模型 被引量:2
18
作者 张向宇 王衍学 《机电工程》 CAS 北大核心 2024年第6期1011-1019,共9页
针对采用神经网络对滚动轴承进行故障诊断时,故障信息利用不充分,特征提取困难的问题,提出了一种基于同步挤压小波变换(SST)-Transformer的滚动轴承智能故障诊断方法。首先,以同步挤压小波变换作为信号处理模块,将一维振动信号转为时频... 针对采用神经网络对滚动轴承进行故障诊断时,故障信息利用不充分,特征提取困难的问题,提出了一种基于同步挤压小波变换(SST)-Transformer的滚动轴承智能故障诊断方法。首先,以同步挤压小波变换作为信号处理模块,将一维振动信号转为时频图;接着,设计了一种最大程度保留故障信息的时频图分割方式,将时频图分割为一系列图像块序列;然后,将序列输入到具有强大的处理序列数据能力的Transformer模型中,进行了特征提取;最后,将特征数据输入分类器进行了分类,对比了不同的时频图分割方式的诊断效果,并将SST-Transformer模型与基准算法相比较。研究结果表明:相较于其他分割方式,基于SST-Transformer的滚动轴承智能故障诊断方法的诊断准确率提升了3.45%,并大幅提升了模型训练的收敛速度;相比于其他基准算法,该方法的平均准确率至少提升了1.05%。该方法有较高的诊断准确率和较好的稳定性。 展开更多
关键词 故障智能诊断 神经网络 故障特征提取 注意力机制 深度学习 同步挤压小波变换 transformer模型
在线阅读 下载PDF
降水空间信息的处理策略对径流预测的影响 被引量:1
19
作者 高玉芳 何川 +1 位作者 彭涛 高勇 《水科学进展》 北大核心 2025年第1期143-154,共12页
降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信... 降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信息不同处理策略对基于LSTM模型的径流预测性能的影响。结果表明:相较于直接使用原始图像的方案,综合运用小波分解和统计特征提取的处理方法测试期纳什效率系数分别提升了11.5%和17.9%,同时也增强了模型的稳定性和解释性;不同的区域划分方法能结合土地利用、土壤类型等下垫面因素,反映降水响应的空间差异性,展现了对各流量等级的适应能力,相较于以流域平均值作为输入的方式,能明显提高捕捉高流量和低流量特征的能力。研究表明在基于LSTM模型的降雨—径流预测模型中引入降水空间信息,可以有效改善预测效果。 展开更多
关键词 径流预测 长短期记忆网络 卷积神经网络 小波变换
在线阅读 下载PDF
一种小样本滚动轴承故障诊断算法 被引量:1
20
作者 宋存利 王子卓 时维国 《中国惯性技术学报》 北大核心 2025年第1期96-106,共11页
针对卷积神经网络在处理滚动轴承时域信号时难以充分提取特征、故障样本稀少及模型泛化性能不足的问题,提出一种基于注意力机制的增强卷积神经网络小样本故障诊断方法。首先,使用连续小波变换将轴承振动信号转化为二维时频图像,以便可... 针对卷积神经网络在处理滚动轴承时域信号时难以充分提取特征、故障样本稀少及模型泛化性能不足的问题,提出一种基于注意力机制的增强卷积神经网络小样本故障诊断方法。首先,使用连续小波变换将轴承振动信号转化为二维时频图像,以便可视化其特征。然后,通过数据增强扩充样本数据,提升模型在小样本情况下的泛化性。为提高特征提取和模型泛化能力,使用MixConv将ConvNeXt V2模型的7×7卷积层重构为不同大小的并行卷积核,增强多尺度特征提取效果;引入卷积注意力机制模块(CBAM)提升关键特征识别能力。该模型在凯斯西储大学、东南大学和渥太华大学的故障数据集上进行实验验证。实验结果表明,所提模型对不同故障的识别率均为100%,与目前常用的7个模型相比,在相同条件下故障识别准确率最高,具有较强的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 注意力机制 连续小波变换 卷积神经网络
在线阅读 下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部