期刊文献+
共找到744篇文章
< 1 2 38 >
每页显示 20 50 100
Classification using wavelet packet decomposition and support vector machine for digital modulations 被引量:4
1
作者 Zhao Fucai Hu Yihua Hao Shiqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期914-918,共5页
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT... To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications. 展开更多
关键词 modulation classification wavelet packet transform modulus maxima matrix support vector machine fuzzy density.
在线阅读 下载PDF
Study on flaw identification of ultrasonic signal for large shafts based on optimal support vector machine 被引量:1
2
作者 Zhao Xiufen Yin Guofu +1 位作者 Tian Guiyun Yin Ying 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第5期908-913,共6页
Automatic identification of flaws is very important for ultrasonic nondestructive testing and evaluation of large shaft.A novel automatic defect identification system is presented.Wavelet packet analysis(WPA)was appli... Automatic identification of flaws is very important for ultrasonic nondestructive testing and evaluation of large shaft.A novel automatic defect identification system is presented.Wavelet packet analysis(WPA)was applied to feature extraction of ultrasonic signal,and optimal Support vector machine(SVM)was used to perform the identification task.Meanwhile,comparative study on convergent velocity and classified effect was done among SVM and several improved BP network models.To validate the method,some experiments were performed and the results show that the proposed system has very high identification performance for large shafts and the optimal SVM processes better classification performance and spreading potential than BP manual neural network under small study sample condition. 展开更多
关键词 裂纹鉴别技术 超声波 转轴 支持向量机
在线阅读 下载PDF
基于连续小波变换的CNN—SVM农机滚动轴承故障诊断
3
作者 沈伟杰 肖茂华 +1 位作者 宋新民 项腾飞 《中国农机化学报》 北大核心 2025年第4期254-264,共11页
针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承... 针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承振动信号进行多尺度时频分析,为后续故障诊断提供更详细的特征;然后,将提取到的时频图作为输入,利用CNN深层次学习故障特征信息;最后,采用SVM对输出结果进行分类,以实现精确的故障类型识别。与BPNN、SVM、CWT—CNN以及CWT—ResNet等方法比较,试验结果表明,CWT—CNN—SVM故障诊断准确率最高,单次准确率达到100%,5次重复试验准确率为99.62%。CWT—CNN—SVM在处理复杂的滚动轴承故障诊断问题时,不仅诊断准确,同时展现出深度学习与故障诊断相结合的优势,能进一步提升小数据集的性能。所提出的CWT—CNN—SVM方法对于提升农机滚动轴承故障诊断性能,具有一定的理论价值和实际应用前景。 展开更多
关键词 故障诊断 农机 滚动轴承 连续小波变换 卷积神经网络 支持向量机
在线阅读 下载PDF
基于改进北方苍鹰算法优化SVM的轴承故障诊断研究
4
作者 吴晓君 李渠伟 《机械强度》 北大核心 2025年第5期80-89,共10页
针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自... 针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization,NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization,PSO)算法、麻雀搜索算法(Sparrow Search Algorithm,SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 改进北方苍鹰优化算法 柯西变异策略 小波包分解 支持向量机
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
5
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
基于PSO-SVM的Φ-OTDR系统模式识别研究 被引量:1
6
作者 朱宗玖 王宁 《科学技术与工程》 北大核心 2024年第12期5023-5029,共7页
针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合... 针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合的模式识别算法。首先,对原始信号进行差分处理后提取时域特征,并利用小波包分解方法,通过验证不同分解层数下的事件分类准确率,设定最优分解层数为6层,提取差分信号的能量特征。然后以SVM分类器为基础,利用PSO算法优化SVM分类器参数,提高光纤振动信号识别准确率。最后利用Φ-OTDR事件数据集进行验证,实验结果表明,该模式识别算法达到了95.6%的振动事件分类准确率。 展开更多
关键词 相位敏感光时域反射仪(Φ-OTDR) 小波包分解 粒子群算法(PSO) 支持向量机(Svm) 模式识别
在线阅读 下载PDF
基于EWT-FE分析联合改进SVM算法的GIS局部放电诊断方法 被引量:5
7
作者 王利猛 王硕 《电气工程学报》 CSCD 北大核心 2024年第1期371-381,共11页
为提高气体绝缘组合电器(Gas insulated switchgear,GIS)局部放电类型诊断的精度,提出了一种基于EWT-FE结合IHPO-SVM算法的GIS局部放电诊断方法。为深度挖掘局部放电信号内部特征,利用经验小波变换(Empirical wavelet transform,EWT)结... 为提高气体绝缘组合电器(Gas insulated switchgear,GIS)局部放电类型诊断的精度,提出了一种基于EWT-FE结合IHPO-SVM算法的GIS局部放电诊断方法。为深度挖掘局部放电信号内部特征,利用经验小波变换(Empirical wavelet transform,EWT)结合模糊熵(Fuzzy entropy,FE)算法对信号进行分解,并提取有效特征量;为提高支持向量机(Support vector machine,SVM)算法自适应能力与分类识别精度,提出利用经过余弦衰减计算方法以及指数下降函数改进的猎人猎物优化(Improved hunter-prey optimizer,IHPO)算法对SVM算法参数进行优化选取;搭建GIS局部放电试验模型,建立基于EWT-FE信号分析结合IHPO-SVM的局部放电识别模型,对所提算法有效性进行验证。试验结果表明,所提算法GIS局部放电类型诊断精度均大于95%,优于传统诊断算法。 展开更多
关键词 局部放电 气体绝缘组合电器 经验小波变换 模糊熵 改进猎人猎物优化算法 支持向量机算法
在线阅读 下载PDF
基于FCM和EO-SVM水轮机尾水管压力脉动特征识别 被引量:1
8
作者 刘茜媛 王利英 +1 位作者 张路遥 曹庆皎 《水电能源科学》 北大核心 2024年第1期162-165,共4页
为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾... 为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾水管压力脉动特征识别中的应用。然后采用模糊C均值聚类算法将待分类的压力脉动特征进行初始聚类,将其分为四类,并依据聚类结果选择最靠近每类中心的样本作为EO-SVM模型的训练样本。将SVM和EO-SVM两种模型的识别分类结果进行比较,验证了所提EO-SVM模型的有效性。 展开更多
关键词 压力脉动 小波包分析 模糊C均值聚类 平衡优化器算法 支持向量机
在线阅读 下载PDF
VMD结合小波包信息熵和GJO-SVM的电机轴承故障诊断 被引量:5
9
作者 纪京生 周莉 马向阳 《现代制造工程》 CSCD 北大核心 2024年第2期128-136,共9页
针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden J... 针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden Jackal Optimization,GJO)算法优化后的支持向量机(Support Vector Machine,SVM)进行电机滚动轴承的故障诊断。首先,利用VMD将采集到的信号进行分解,依据局部极小包络熵筛选出最优本征模态(Intrinsic Mode Function,IMF)分量;其次,利用小波包将最优IMF分量再分解,并提取信息熵作为特征向量矩阵;最后,采用GJO算法对支持向量机中的惩罚参数和核参数进行寻优选择,建立GJO-SVM故障诊断模型,将特征向量矩阵输入金豺算法优化支持向量机(GJO-SVM)故障诊断模型中进行故障诊断。将VMD结合小波包信息熵特征提取与VMD结合近似熵特征提取进行对比试验,试验结果表明,VMD结合小波包信息熵特征提取精度提高了2.5%,其特征提取更加优越;将金豺算法优化支持向量机(GJO-SVM)与粒子群优化(Porticle Swarm OPtimization,PSO)算法支持向量机(PSO-SVM)、果蝇优化算法(Fruit fly Optimation Algorithm,FOA)支持向量机(FOA-SVM)进行对比试验,试验结果表明,GJO-SVM其平均准确率达到99.16%,较PSO-SVM、FOA-SVM分别提高了2.5%、3.61%。金豺算法优化支持向量机(GJO-SVM)可以更加有效提取并诊断滚动轴承故障。 展开更多
关键词 变分模态分解 小波包信息熵 金豺优化算法 支持向量机 轴承故障诊断
在线阅读 下载PDF
基于优化TQWT及孪生SVM的有载分接开关机械故障诊断 被引量:3
10
作者 余长厅 黎大健 +2 位作者 陈梁远 张磊 赵坚 《高压电器》 CAS CSCD 北大核心 2024年第10期110-118,共9页
为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish s... 为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。 展开更多
关键词 有载分接开关 机械故障 振动信号 品质因数可调小波变换 人工鱼群算法 孪生支持向量机
在线阅读 下载PDF
基于SSA-SVM的航空电弧故障检测 被引量:6
11
作者 戴洪德 张志亮 +2 位作者 崔伟成 王艺卉 陈美男 《科学技术与工程》 北大核心 2024年第13期5626-5633,共8页
针对航空线路系统电弧故障隐蔽性高和难以检测的问题,提出一种基于麻雀搜索算法优化支持向量机(sparrow search algorithm optimization support vector machine,SSA-SVM)的航空电弧故障检测方法。首先采用小波分解对电弧故障电流数据... 针对航空线路系统电弧故障隐蔽性高和难以检测的问题,提出一种基于麻雀搜索算法优化支持向量机(sparrow search algorithm optimization support vector machine,SSA-SVM)的航空电弧故障检测方法。首先采用小波分解对电弧故障电流数据进行分解,小波分解能有效克服经验模态分解时存在的模态混叠问题。再从信号无序度的角度对电流分量提取能量熵、模糊熵与近似熵,并构造特征向量。然后,使用麻雀搜索算法对支持向量机的权值进行优化,得到最优的权值,最后用训练好的支持向量机对测试样本进行分类。为了验证所提方法的有效性,搭建电弧实验平台,模拟航空线路系统电弧故障的产生,分别采集交流串联正常和电弧故障电流数据,应用所提出的SSA-SVM算法进行电弧故障检测,结果表明,所提方法能较好地识别出电弧故障,检测准确率达到99.5%,相比于粒子群算法或遗传算法优化的支持向量机,对电弧故障的检测准确率分别高出2.5%和2%。 展开更多
关键词 电弧 故障检测 小波分析 支持向量机 麻雀搜索算法
在线阅读 下载PDF
基于WPT-ITTA-RELM/ELM/LSSVM模型的日径流预测研究 被引量:5
12
作者 董欣林 崔东文 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第4期16-24,共9页
为提高日径流预测精度,验证改进足球战术算法(ITTA)寻优正则化极限学习机(RELM)、极限学习机(ELM)、最小二乘支持向量机(LSSVM)超参数对日径流预测精度的影响,提出小波包分解(WPT)-ITTA-RELM/ELM/LSSVM时间序列预测模型,并通过德厚大型... 为提高日径流预测精度,验证改进足球战术算法(ITTA)寻优正则化极限学习机(RELM)、极限学习机(ELM)、最小二乘支持向量机(LSSVM)超参数对日径流预测精度的影响,提出小波包分解(WPT)-ITTA-RELM/ELM/LSSVM时间序列预测模型,并通过德厚大型水库入库日径流预测实例进行验证.首先,利用WPT分解处理日径流时序数据,以获得更具规律的子序列分量;其次,通过典型测试函数和RELM/ELM/LSSVM超参数寻优适应度函数对ITTA寻优能力进行检验,并与基本足球战术算法(TTA)、灰狼优化(GWO)算法、倭黑猩猩优化(BO)算法、黏菌算法(SMA)、鲸鱼优化算法(WOA)的优化结果作对比;最后,建立WPT-ITTA-RELM/ELM/LSSVM模型对实例日径流进行预测,并构建WPT-TTA/GWO/BO/SMA/WOA-RELM、WPT-TTA/GWO/BO/SMA/WOA-ELM、WPT-TTA/GWO/BO/SMA/WOA-LSSVM、WPT-RELM/ELM/LSSVM作对比分析模型.结果表明:对于高维和低维优化问题,ITTA寻优精度均优于TTA、GWO、BO、SMA、WOA,表明通过Levy飞行策略及平衡系数等的改进,可有效提高ITTA全局搜索性能和全局、局部平衡能力.WPT-ITTA-RELM、WPT-ITTA-ELM模型对实例日径流预测的平均绝对百分比误差(E_(MAP))分别为0.521%与0.604%,平均绝对误差(E MA)分别为0.024 m^(3)/s与0.025 m^(3)/s,纳什效率系数(E_(NS))均为0.9992,优于其他对比模型;其中WPT-ITTA-ELM模型运行时间较长,不利于大容量样本的预测研究.对于RELM/ELM超参数高维寻优,ITTA优化效果最好,SMA、TTA次之,GWO、BO、WOA优化效果较差;对于LSSVM超参数低维寻优,由于优化维度低、问题简单,ITTA等6种算法均具有较好的优化效果,但ITTA优化效果最好. 展开更多
关键词 日径流预测 极限学习机 最小二乘支持向量机 改进足球战术算法 小波包变换 超参数优化
在线阅读 下载PDF
基于改进LeNet-5网络的堆芯燃料组件编码识别
13
作者 吕伽奇 丁帅 +1 位作者 庞静珠 许小进 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第2期121-128,共8页
在核电站堆芯核燃料组件水下组装作业中,需要通过视觉技术进行组件编码的识别以便准确定位组件的安装位置。针对水下环境中弱光照等问题导致了图像质量的降低,本文通过乘方增强算法、OSTU算法、CLAHE算法和拉普拉斯变换的方法来实现堆... 在核电站堆芯核燃料组件水下组装作业中,需要通过视觉技术进行组件编码的识别以便准确定位组件的安装位置。针对水下环境中弱光照等问题导致了图像质量的降低,本文通过乘方增强算法、OSTU算法、CLAHE算法和拉普拉斯变换的方法来实现堆芯燃料组件编码字符水下图像的增强。为了提高编码识别效果,提出了一种整合LeNet-5网络和支持向量机(SVM)的模型,在网络中添加BN(Batch Normalization)层与Dropout层来加速网络的运行速度,并改进Sigmoid函数,增加函数的平滑性,以此来减少梯度消失。实验表明,在自定义数据集上的验证准确率为99.82%,识别率为100%,相比于其他模型有显著的提升。 展开更多
关键词 编码识别 图像处理 CLAHE算法 LeNet-5 支持向量机(Svm)
在线阅读 下载PDF
基于SSWT‑GLCM与改进WOA‑SVM的变压器机械故障时频诊断
14
作者 杨义 李晓华 +3 位作者 李俊聪 赵文彬 陈皖皖 夏能弘 《振动.测试与诊断》 EI CSCD 北大核心 2024年第6期1135-1143,1247,共10页
为进一步提高变压器故障诊断精度,提出一种基于同步压缩小波变换(synchrosqueezed wavelet transform,简称SSWT)-灰度共生矩阵(gray-level co-occurrence matrix,简称GLCM)的变压器机械故障时频诊断方法。首先,利用SSWT对变压器振动信... 为进一步提高变压器故障诊断精度,提出一种基于同步压缩小波变换(synchrosqueezed wavelet transform,简称SSWT)-灰度共生矩阵(gray-level co-occurrence matrix,简称GLCM)的变压器机械故障时频诊断方法。首先,利用SSWT对变压器振动信号进行时频分析,得到能量堆叠密集的二维时频图,有效保留了变压器振动信号的主要特征信息;其次,联合描述区域像素关系的GLCM提取出二维时频图的主要特征信息,为后续故障诊断模型提供有效的特征参数;最后,通过改进鲸鱼算法优化(whale optimization algorithm,简称WOA)对支持向量机(support vector machine,简称SVM)的关键参数进行优化,建立了基于改进WOA-SVM的变压器典型机械故障时频诊断模型。实验结果表明,所构建的改进WOA-SVM故障诊断模型具有较高的识别精度和运算效率,为基于振动信号的变压器机械故障时频诊断提供了技术支撑。 展开更多
关键词 变压器 同步压缩小波变换 灰度共生矩阵 改进鲸鱼算法优化-支持向量机算法 故障分类
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
15
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合核函数 支持向量机及其变体 超参数优化
在线阅读 下载PDF
基于提升小波和LS-SVM的大坝变形预测 被引量:7
16
作者 秦栋 郑雪琴 许后磊 《水电能源科学》 北大核心 2010年第9期64-66,共3页
提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果。算例结果表明,该... 提出了一种基于提升小波和最小二乘支持向量机的大坝变形预测方法,通过提升小波分析提取大坝监测数据效应量,分别对各效应量使用最小二乘支持向量机模型进行训练预测,再将合成各分量的预测结果作为最终的变形预测结果。算例结果表明,该方法较符合实际情况,具有很高的预测精度和良好的泛化能力。 展开更多
关键词 提升小波 LS-Svm 大坝变形 变形预测 support vector machine Least Square LIFTING wavelet Based 最小二乘支持向量机 预测结果 支持向量机模型 效应量 预测精度 预测方法 小波分析 监测数据 泛化能力 训练 提取 合成
在线阅读 下载PDF
基于LOF和SVM的智能配电网故障辨识方法 被引量:35
17
作者 胡伟 李勇 +3 位作者 曹一家 张志鹏 赵庆周 段义隆 《电力自动化设备》 EI CSCD 北大核心 2016年第6期7-12,共6页
针对现有智能配电网保护方法存在保护装置整定复杂、协调性差以及易误动等问题,提出一种基于局部异常因子(LOF)检测的配电网保护算法,并对配电网在故障定位后不能进行有效的故障类型辨识这一问题,提出LOF和支持向量机(SVM)相结合的智能... 针对现有智能配电网保护方法存在保护装置整定复杂、协调性差以及易误动等问题,提出一种基于局部异常因子(LOF)检测的配电网保护算法,并对配电网在故障定位后不能进行有效的故障类型辨识这一问题,提出LOF和支持向量机(SVM)相结合的智能配电网故障类型判别方法。根据各节点LOF值的大小实现智能配电网的故障检测与定位;然后对故障处的三相电压进行小波变换,以三相电压的小波奇异熵值建立故障特征样本库,利用反映接地故障信息的零序电压低频能量对故障进行预分类,并以此为基础建立SVM故障类型判别预测模型。该算法可对智能配电网的故障进行有效的检测与定位,并能对故障区域的不同故障类型进行合理分类。 展开更多
关键词 智能配电网 故障定位 局部异常因子 小波变换 支持向量机
在线阅读 下载PDF
基于小波变换和LS-SVM的雷达故障诊断 被引量:18
18
作者 涂望明 宋执环 +2 位作者 陈运涛 魏友国 周晶晶 《控制工程》 CSCD 北大核心 2013年第2期309-312,共4页
根据雷达接收机信号特点,提出了将小波变换和最小二乘支持向量机相结合的雷达故障诊断新方法。首先,根据专家经验选取电路中恰当的测试点,运用小波变换对采样数据进行处理和特征提取,然后建立了雷达故障诊断模型。最后再运用最小二乘支... 根据雷达接收机信号特点,提出了将小波变换和最小二乘支持向量机相结合的雷达故障诊断新方法。首先,根据专家经验选取电路中恰当的测试点,运用小波变换对采样数据进行处理和特征提取,然后建立了雷达故障诊断模型。最后再运用最小二乘支持向量机(LS-SVM)的基本原理和分类方法进行故障诊断,并在某型雷达接收机故障诊断中进行了实际应用研究。采样信号先经过小波降噪处理,以减少采样引人的误差,再进行小波分解提取能量系数作为雷达的故障特征向量,经归一化处理后,作为输入向量,经诊断模型输出后完成雷达接收机典型故障的诊断。MATLAB实例仿真结果表明,该方法有很好的分类能力,提高了雷达故障诊断的正确性和效率。 展开更多
关键词 小波变换 最小二乘支持向量机 雷达 故障诊断
在线阅读 下载PDF
基于小波包Shannon熵SVM和遗传算法的电机机械故障诊断 被引量:42
19
作者 张亚楠 魏武 武林林 《电力自动化设备》 EI CSCD 北大核心 2010年第1期87-91,共5页
针对电机机械多故障同时诊断问题,基于小波包、Shannon熵、支持向量机(SVM)和遗传算法,提出了一种电机机械故障诊断新方法,称之为WPSSG法或多模型融合法。该方法选择容错性强的Shannon熵作为特征参数,通过对振动信号进行基于DMeyer小波... 针对电机机械多故障同时诊断问题,基于小波包、Shannon熵、支持向量机(SVM)和遗传算法,提出了一种电机机械故障诊断新方法,称之为WPSSG法或多模型融合法。该方法选择容错性强的Shannon熵作为特征参数,通过对振动信号进行基于DMeyer小波的小波包分解,提取振动信号的小波包Shannon熵为特征向量,将特征向量作为多类别SVM的输入,具有较高的去噪能力;在训练SVM时,与传统方法多采用试凑法选择参数不同,该方法采用遗传算法对SVM的参数进行全局寻优,使SVM获得最佳的分类性能,具有更高的识别准确率。采用凯斯西储大学提供的电机机械故障数据进行实验,结果证明该方法具有很好的可靠性和准确性。 展开更多
关键词 电机 故障诊断 小波包 Shannon熵 支持向量机 遗传算法
在线阅读 下载PDF
基于自适应小波分解和SVM的模拟电路故障诊断 被引量:31
20
作者 孙永奎 陈光 李辉 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第10期2105-2109,共5页
为了降低模拟电路参数故障的测试难度,提出了基于自适应小波分解和SVM的模拟电路故障诊断的新方法,该方法对电路故障响应进行小波分解提取最优故障特征,母小波的选择是根据被测电路的正常响应和故障响应小波系数之差的最大均方根原则,... 为了降低模拟电路参数故障的测试难度,提出了基于自适应小波分解和SVM的模拟电路故障诊断的新方法,该方法对电路故障响应进行小波分解提取最优故障特征,母小波的选择是根据被测电路的正常响应和故障响应小波系数之差的最大均方根原则,并引入支持向量机对故障进行分类识别。小波分解具有自适应性,支持向量机结构简单,泛化能力强。实验结果证明了所提的基于自适应小波分解和SVM的模拟电路故障诊断方法是有效的,其故障诊断率大于96.8%。 展开更多
关键词 模拟电路 故障诊断 自适应小波分解 支持向量机
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部