Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. Th...Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endo- thelial cells. Methods Cultured human umbilical vein endothelial cells were treated with H202 (400 μmol · L^-1) or H202plus PNU-282987 ( 10 μmol · L^-1 ). Cell viability and membrane integrity were measured. AnnexinV + PI assay, immunoblotting of bcl-2, bax and cleaved caspase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 ( VPO-1 ) and phosphor- JNK were measured by immunoblotting. Results Activation of α7nAChR by a selective agonist PNU-282987 pre-vented H202-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2 02 -induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activa- tion on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyl- lycaconitine blocked the cytoprotective effect of PNU-282987. Conclusion These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signa- ling pathway-dependent manner in endothelial cells.展开更多
As a key mediator of normal physiological angiogenesis, vascular endothelial growth factor(VEGF) has been regarded as an emancipator to plastic surgeon, and yet a misfortune to oncology surgeon, due to its singular bi...As a key mediator of normal physiological angiogenesis, vascular endothelial growth factor(VEGF) has been regarded as an emancipator to plastic surgeon, and yet a misfortune to oncology surgeon, due to its singular biological effect. Therefore in some clinical cases, especially for some malignant tumor patients having endured radical surgery and being craving for a reconstructive surgery, VEGF plays a role full of paradoxes. To make a clinical balance, we should find a point to inhibit tumor cell from utilizing VEGF and make a permission to normal tissues to employ it.展开更多
OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like g...OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.展开更多
Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ab...Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.展开更多
OBJECTIVE To explore the role of gecko crude peptides(GCPs)in the proliferation,apoptosis,migration and lymphangiogenesis of human hepatocellular carcinoma cells(Hep G2)and human lymphaticendothelial cells(HLECs)in vi...OBJECTIVE To explore the role of gecko crude peptides(GCPs)in the proliferation,apoptosis,migration and lymphangiogenesis of human hepatocellular carcinoma cells(Hep G2)and human lymphaticendothelial cells(HLECs)in vitro.METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay was used to evaluate the anti-proliferative effect of GCPs and si RNA-VEGF-C on Hep G2 cells,Hoechst 33258 staining and flow cytometry were performed to analyze cycle and apoptosis.The migration and invasion ability of cells were assayed by transwell chamber experiment and wound-healing assay.The protein and m RNA expressions of vascular endothelial growth factor-C(VEGF-C)and CXC chemokine receptor-4(CXCR4)were detected by q-PCR,immunofluorescence,Western blot.The protein expressions of the extracellular signal regulated kinase(ERKI/2),c-Jun N-terminal kinase(JNK),p38-mitogen activated protein kinases(p38 MAPK),serine/threonine kinase(Akt)and phosphatidylinositol-3-kinase(PI3K)were detected by western blot.The anti-lymphangiogenesis effect of GCPs on the HLECs was analyzed using an in vitro tube-formation assay.The protein and m RNA expressions of vascular endothelial growth factor receptor-3(VEGFR-3)and stromal cell-derived factor-1(SDF-1)were detected by q-PCR,Western blot.RESULTS GCPs and si RNA-VEGF-C inhibited Hep G2 proliferation,invasion and migration,and the most obvious inhibitory effect was both synergistic effects.Thus,GCPs suppressed HLECs proliferation,migration and tubelike structure formationin a dose-dependent manner,and had inhibitory effect of tumor-induced lymphangiogenesis in vitro.Additionally,we found that GCPs and si RNA-VEGF-C decreased the expressions of MMP-2,MMP-9,VEGF-C,CXCR4,phospho-ERK1/2,phospho-P38,phospho-JNK and PI3K in Hep G2 cells.Moreover,GCPs had a dose-dependent depressive effecton the expressions of VEGFR-3,SDF-1 in HLECs.CONCLUSION The low expression of VEGF-C mediated by si RNA-VEGF-C and GCPs inhibit tumor proliferation,invasion and migrationby suppressing the MAPK signaling pathway through reduced levels of VEGF-C,and GCPs inhibit tumor lymphangiogenesis by suppressing the CXCR4/SDF-1 signaling pathway through suppressed VEGF-C/VEGFR-3.展开更多
Gastrin and cyclooxygenase-2(COX-2) playimportant roles in the carcinogenesis and progression ofgastric cancer.However,it remains unknown whether the combination of cholecystokinin-2(CCK-2) receptor antagonist plus CO...Gastrin and cyclooxygenase-2(COX-2) playimportant roles in the carcinogenesis and progression ofgastric cancer.However,it remains unknown whether the combination of cholecystokinin-2(CCK-2) receptor antagonist plus COX-2 inhibitor exerts synergistic anti-tumor effects on human gastric cancer.Here,we demonstrated that the combination of AG-041R(a CCK-2 receptor antagonist) plus NS-398(a selective COX-2 inhibitor) treatment had synergistic effects on proliferation inhibition,apoptosis induction,down-regulation of Bcl-2 and up-regulation of Bax expression in MKN-45 cells.These results indicate that simultaneous targeting of CCK-2 receptor and COX-2 may inhibit gastric cancer development more effectively than targeting either molecule alone.(C)2008 Elsevier Ireland Ltd.All rights reserved.展开更多
文摘Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endo- thelial cells. Methods Cultured human umbilical vein endothelial cells were treated with H202 (400 μmol · L^-1) or H202plus PNU-282987 ( 10 μmol · L^-1 ). Cell viability and membrane integrity were measured. AnnexinV + PI assay, immunoblotting of bcl-2, bax and cleaved caspase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 ( VPO-1 ) and phosphor- JNK were measured by immunoblotting. Results Activation of α7nAChR by a selective agonist PNU-282987 pre-vented H202-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2 02 -induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activa- tion on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyl- lycaconitine blocked the cytoprotective effect of PNU-282987. Conclusion These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signa- ling pathway-dependent manner in endothelial cells.
文摘As a key mediator of normal physiological angiogenesis, vascular endothelial growth factor(VEGF) has been regarded as an emancipator to plastic surgeon, and yet a misfortune to oncology surgeon, due to its singular biological effect. Therefore in some clinical cases, especially for some malignant tumor patients having endured radical surgery and being craving for a reconstructive surgery, VEGF plays a role full of paradoxes. To make a clinical balance, we should find a point to inhibit tumor cell from utilizing VEGF and make a permission to normal tissues to employ it.
基金Supported by the Grant from the Chinese Ministry of Agriculture [No.NYCYTX-43] the Zhejiang Provincial Natural Science Foundation of China [No.R3090332]
基金supported by National Natural Science Foundation of China(81502123 and81330081)Natural Science Foundation of Anhui Province(1308085QH130)Anhui Province Nature Science Foundation in University(KJ2014A119)
文摘OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.
文摘Momordica antiviral protein 30 kD(MAP30)is a type I ribosome-inactivating protein(RIP)with antibacterial,anti-HIV and antitumor activities but lacks the ability to target tumor cells.To increase its tumor-targeting ability,the arginine-glycine-aspartic(RGD)peptide and the epidermal growth factor receptor interference(EGFRi)peptide were fused with MAP30,which was named ELRL-MAP30.The efficiency of targeted therapy for triple-negative breast cancer(TNBC)MDA-MB-231 cells,which lack the expression of estrogen receptor(ER),Progesterone receptor(PgR)and human epidermal growth factor receptor-2(HER2),is limited.In this study,we focus on exploring the effect and mechanism of ELRL-MAP30 on TNBC MDA-MB-231 cells.First,we discovered that ELRL-MAP30 significantly inhibited the migration and invasion of MDA-MB-231 cells and induced MDA-MB-231 cell apoptosis.Moreover,ELRL-MAP30 treatment resulted in a significant increase in Bax expression and a decrease in Bcl-2 expression.Furthermore,ELRL-MAP30 triggered apoptosis via the Fak/EGFR/Erk and Ilk/Akt signaling pathways.In addition,recombinant ELRL-MAP30 can inhibit chicken embryonic angiogenesis,and also inhibit the tube formation ability of human umbilical vein endothelial cells(HUVECs),indicating its potential therapeutic effects on tumor angiogenesis.Collectively,these results indicate that ELRL-MAP30 has significant tumor-targeting properties in MDA-MB-231 cancer cells and reveals potential therapeutic effects on angiogenesis.These findings indicate the potential role of ELRL-MAP30 in the targeted treatment of the TNBC cell line MDA-MB-231.
基金supported by Medical Science and Technology Research Project of Henan Province(142102310031)
文摘OBJECTIVE To explore the role of gecko crude peptides(GCPs)in the proliferation,apoptosis,migration and lymphangiogenesis of human hepatocellular carcinoma cells(Hep G2)and human lymphaticendothelial cells(HLECs)in vitro.METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay was used to evaluate the anti-proliferative effect of GCPs and si RNA-VEGF-C on Hep G2 cells,Hoechst 33258 staining and flow cytometry were performed to analyze cycle and apoptosis.The migration and invasion ability of cells were assayed by transwell chamber experiment and wound-healing assay.The protein and m RNA expressions of vascular endothelial growth factor-C(VEGF-C)and CXC chemokine receptor-4(CXCR4)were detected by q-PCR,immunofluorescence,Western blot.The protein expressions of the extracellular signal regulated kinase(ERKI/2),c-Jun N-terminal kinase(JNK),p38-mitogen activated protein kinases(p38 MAPK),serine/threonine kinase(Akt)and phosphatidylinositol-3-kinase(PI3K)were detected by western blot.The anti-lymphangiogenesis effect of GCPs on the HLECs was analyzed using an in vitro tube-formation assay.The protein and m RNA expressions of vascular endothelial growth factor receptor-3(VEGFR-3)and stromal cell-derived factor-1(SDF-1)were detected by q-PCR,Western blot.RESULTS GCPs and si RNA-VEGF-C inhibited Hep G2 proliferation,invasion and migration,and the most obvious inhibitory effect was both synergistic effects.Thus,GCPs suppressed HLECs proliferation,migration and tubelike structure formationin a dose-dependent manner,and had inhibitory effect of tumor-induced lymphangiogenesis in vitro.Additionally,we found that GCPs and si RNA-VEGF-C decreased the expressions of MMP-2,MMP-9,VEGF-C,CXCR4,phospho-ERK1/2,phospho-P38,phospho-JNK and PI3K in Hep G2 cells.Moreover,GCPs had a dose-dependent depressive effecton the expressions of VEGFR-3,SDF-1 in HLECs.CONCLUSION The low expression of VEGF-C mediated by si RNA-VEGF-C and GCPs inhibit tumor proliferation,invasion and migrationby suppressing the MAPK signaling pathway through reduced levels of VEGF-C,and GCPs inhibit tumor lymphangiogenesis by suppressing the CXCR4/SDF-1 signaling pathway through suppressed VEGF-C/VEGFR-3.
文摘Gastrin and cyclooxygenase-2(COX-2) playimportant roles in the carcinogenesis and progression ofgastric cancer.However,it remains unknown whether the combination of cholecystokinin-2(CCK-2) receptor antagonist plus COX-2 inhibitor exerts synergistic anti-tumor effects on human gastric cancer.Here,we demonstrated that the combination of AG-041R(a CCK-2 receptor antagonist) plus NS-398(a selective COX-2 inhibitor) treatment had synergistic effects on proliferation inhibition,apoptosis induction,down-regulation of Bcl-2 and up-regulation of Bax expression in MKN-45 cells.These results indicate that simultaneous targeting of CCK-2 receptor and COX-2 may inhibit gastric cancer development more effectively than targeting either molecule alone.(C)2008 Elsevier Ireland Ltd.All rights reserved.