This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and...This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and the snapshots and thus the loss of target signal to noise ratio(SNR)of pulse compression.In this paper,we explore the spatial divergence of interference sources and consider the rotated array radar anti-mainlobe jamming problem as a generalized rotated array mixed signal(RAMS)model firstly.Then the corresponding algorithm improved blind source separation(BSS)using the frequency domain of robust principal component analysis(FDRPCA-BSS)is proposed based on the established rotating model.It can eliminate the influence of the rotating parts and address the problem of loss of SNR.Finally,the measured peakto-average power ratio(PAPR)of each separated channel is performed to identify the target echo channel among the separated channels.Simulation results show that the proposed method is practically feasible and can suppress the mainlobe jamming with lower loss of SNR.展开更多
针对欠定盲分离中时变混合矩阵的估计问题,在稀疏域二维最小偏差角算法的基础上,提出了一种改进的欠定盲分离时变混合矩阵估计算法。该算法通过判断原始阵各列上是否都有观测点聚集和聚集在原始阵上的观测点以外的点的聚集方向,来检测...针对欠定盲分离中时变混合矩阵的估计问题,在稀疏域二维最小偏差角算法的基础上,提出了一种改进的欠定盲分离时变混合矩阵估计算法。该算法通过判断原始阵各列上是否都有观测点聚集和聚集在原始阵上的观测点以外的点的聚集方向,来检测变化时刻;并利用基于点密度大区域检测算法估计混合矩阵。改进算法对于混合矩阵发生某些列增加、消失和变化时均能检测出变化,并且在大幅提高变化时刻检测概率和混合矩阵估计精度的同时,降低了复杂度。实验仿真结果表明,在20 d B信噪比时,混合矩阵估计精度提高了60%以上。展开更多
将基于独立成分分析(independent component analysis,ICA)技术的盲分解方法(blind signal separation,BSS)应用于遥感混合像元的定量分解,解决了幅度不确定性问题,实现了从高光谱数据中同时得到定量的组分光谱信息和组分权重信息。通...将基于独立成分分析(independent component analysis,ICA)技术的盲分解方法(blind signal separation,BSS)应用于遥感混合像元的定量分解,解决了幅度不确定性问题,实现了从高光谱数据中同时得到定量的组分光谱信息和组分权重信息。通过数值模拟实验提出了光谱反演区间的选择方法,进一步完善了该算法,且讨论了算法的稳健性。以陕西省横山县为试验区,从HYPERION高光谱影像中反演了各像元的植被覆盖度,并利用SPOT5影像进行了精度验证,结果表明该方法具有较高的精度。展开更多
基金supported by the National Natural Science Foundation of China(62271255,61871218,61801211)the Fundamental Research Funds for the Central Universities(3082019NC2019002,NG2020001,NP2014504)+2 种基金the Open Research Fund of State Key Laboratory of Space-Ground Integrated Information Technology(2018_SGIIT_KFJJ_AI_03)the Funding of Postgraduate Research Practice&Innovation Program of Jiangsu Province(KYCX200201)the Open Research Fund of the Key Laboratory of Radar Imaging and Microwave Photonics(Nanjing University of Aeronautics and Astronautics),Ministry of E ducation(NJ20210001)。
文摘This study deals with the problem of mainlobe jamming suppression for rotated array radar.The interference becomes spatially nonstationary while the radar array rotates,which causes the mismatch between the weight and the snapshots and thus the loss of target signal to noise ratio(SNR)of pulse compression.In this paper,we explore the spatial divergence of interference sources and consider the rotated array radar anti-mainlobe jamming problem as a generalized rotated array mixed signal(RAMS)model firstly.Then the corresponding algorithm improved blind source separation(BSS)using the frequency domain of robust principal component analysis(FDRPCA-BSS)is proposed based on the established rotating model.It can eliminate the influence of the rotating parts and address the problem of loss of SNR.Finally,the measured peakto-average power ratio(PAPR)of each separated channel is performed to identify the target echo channel among the separated channels.Simulation results show that the proposed method is practically feasible and can suppress the mainlobe jamming with lower loss of SNR.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60674003No.60505005)+4 种基金国家杰出青年基金(the National Science Fund of China for Distinguished Young Scholar under Grant No.60325310)广东省自然科学团队研究项目(No.04205783)广东省自然科学基金(the Natural Science Foundation of Guangdong Province of China under Grant No.05006508 No.05103553)科技部重大基础前期研究专项(No.2005CCA04100)。
文摘针对欠定盲分离中时变混合矩阵的估计问题,在稀疏域二维最小偏差角算法的基础上,提出了一种改进的欠定盲分离时变混合矩阵估计算法。该算法通过判断原始阵各列上是否都有观测点聚集和聚集在原始阵上的观测点以外的点的聚集方向,来检测变化时刻;并利用基于点密度大区域检测算法估计混合矩阵。改进算法对于混合矩阵发生某些列增加、消失和变化时均能检测出变化,并且在大幅提高变化时刻检测概率和混合矩阵估计精度的同时,降低了复杂度。实验仿真结果表明,在20 d B信噪比时,混合矩阵估计精度提高了60%以上。
文摘将基于独立成分分析(independent component analysis,ICA)技术的盲分解方法(blind signal separation,BSS)应用于遥感混合像元的定量分解,解决了幅度不确定性问题,实现了从高光谱数据中同时得到定量的组分光谱信息和组分权重信息。通过数值模拟实验提出了光谱反演区间的选择方法,进一步完善了该算法,且讨论了算法的稳健性。以陕西省横山县为试验区,从HYPERION高光谱影像中反演了各像元的植被覆盖度,并利用SPOT5影像进行了精度验证,结果表明该方法具有较高的精度。