To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead,it is vital to understand how the embedded structure(ES)affects the EFP forming performance.In this paper,the corresponding nu...To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead,it is vital to understand how the embedded structure(ES)affects the EFP forming performance.In this paper,the corresponding numerical investigation is focused on,in which the fluid-structure interaction(FSI)method and the experimental verification are used.Based on the obtained quantitative relations between the forming performance and a(the ratio of height to maximum radius of ES),an optimal design is further provided.The results indicate that:when the embedded structural length and width range 0.1e0.3D and 0.1e0.2D(D:diameter of EFP warhead)at a fixed volume,respectively,EFP forming velocity nearly keeps as a constant,1760 m/s;the height of ES has a dramatical effect on the propagating range of detonation wave,resulting in significant influence on the aerodynamic shape and length-to-diameter ratio of EFP;under the given constraints,the EFP length-diameter ratio can reach the optimal value2.76,when the height of ES is 0.22D.展开更多
Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation ...Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures.展开更多
基金funded by the National Natural Science Foundation of China under No. 11102088Fundamental Research Funds for the Central Universities under No. 30915118821funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China under No. 20133219110019
文摘To improve the damage efficiency of compact terminal sensitive projectile with EFP warhead,it is vital to understand how the embedded structure(ES)affects the EFP forming performance.In this paper,the corresponding numerical investigation is focused on,in which the fluid-structure interaction(FSI)method and the experimental verification are used.Based on the obtained quantitative relations between the forming performance and a(the ratio of height to maximum radius of ES),an optimal design is further provided.The results indicate that:when the embedded structural length and width range 0.1e0.3D and 0.1e0.2D(D:diameter of EFP warhead)at a fixed volume,respectively,EFP forming velocity nearly keeps as a constant,1760 m/s;the height of ES has a dramatical effect on the propagating range of detonation wave,resulting in significant influence on the aerodynamic shape and length-to-diameter ratio of EFP;under the given constraints,the EFP length-diameter ratio can reach the optimal value2.76,when the height of ES is 0.22D.
基金supported by the National Natural Science Foundation of China(Grant No.51978166)。
文摘Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures.