Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft su...Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable.展开更多
配电变压器是电能供给和需求的交汇点,也是配电网故障、电能质量等不利因素对源网荷储产生影响的集散点,但存在不可控、无故障隔离与穿越能力等缺点,难以实现源网荷储的灵活调控与优化运行。近年来,国内外学者针对柔性可控的混合式配电...配电变压器是电能供给和需求的交汇点,也是配电网故障、电能质量等不利因素对源网荷储产生影响的集散点,但存在不可控、无故障隔离与穿越能力等缺点,难以实现源网荷储的灵活调控与优化运行。近年来,国内外学者针对柔性可控的混合式配电变压器(hybrid distribution transformer,HDT)技术开展了广泛研究,并提出一系列拓扑及控制方法,但未对相关研究工作进行系统地归纳整理与分析总结。为此,该文首先分析面向新能源配电网的HDT应用需求,回顾现有HDT发展历史,对HDT涉及的关键技术,尤其是工频变压器和变流器串并联集成的HDT拓扑结构、装置级和变流器级的控制保护协调技术、工频变压器与变流器集成化及关键部件设计、HDT技术标准化情况等进行梳理和总结。最后,对HDT发展存在的关键制约因素及未来发展方向进行讨论和展望,以期为面向新型配电网的智能配电变压器的发展与研究提供新思路。展开更多
基金support by the 11th Five Year Key Project of China’s National Scientific Supporting Plan(Grant No.2006BAB04A03)the Hydraulic Engineering Project from the Water Resources Department of Jiangsu Province(Grant No.2010023)
文摘Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable.
文摘配电变压器是电能供给和需求的交汇点,也是配电网故障、电能质量等不利因素对源网荷储产生影响的集散点,但存在不可控、无故障隔离与穿越能力等缺点,难以实现源网荷储的灵活调控与优化运行。近年来,国内外学者针对柔性可控的混合式配电变压器(hybrid distribution transformer,HDT)技术开展了广泛研究,并提出一系列拓扑及控制方法,但未对相关研究工作进行系统地归纳整理与分析总结。为此,该文首先分析面向新能源配电网的HDT应用需求,回顾现有HDT发展历史,对HDT涉及的关键技术,尤其是工频变压器和变流器串并联集成的HDT拓扑结构、装置级和变流器级的控制保护协调技术、工频变压器与变流器集成化及关键部件设计、HDT技术标准化情况等进行梳理和总结。最后,对HDT发展存在的关键制约因素及未来发展方向进行讨论和展望,以期为面向新型配电网的智能配电变压器的发展与研究提供新思路。