输电线路的智能巡检视觉任务对电力系统的安全稳定至关重要。尽管深度学习网络在分布一致的训练和测试数据集上表现良好,但实际应用中数据分布的偏差常常会降低模型性能。为了解决这一问题,提出一种基于对比学习的训练方法(TMCL),旨在...输电线路的智能巡检视觉任务对电力系统的安全稳定至关重要。尽管深度学习网络在分布一致的训练和测试数据集上表现良好,但实际应用中数据分布的偏差常常会降低模型性能。为了解决这一问题,提出一种基于对比学习的训练方法(TMCL),旨在增强模型鲁棒性。首先,构建专为输电线路场景设计的基准测试集TLD-C(Transmission Line Dataset-Corruption)用于评估模型在面对图像损坏时的鲁棒性;其次,通过构建对类别特征敏感的正负样本对,提升模型对不同类别特征的区分能力;然后,使用结合对比损失和交叉熵损失的联合优化策略对特征提取过程施加额外约束,以优化特征向量的表征;最后,引入非局部特征去噪网络(NFD)用于提取与类别密切相关的特征。实验结果表明,模型改进后的训练方法在输电线路数据集(TLD)上的平均精度比原始方法高出3.40个百分点,在TLD-C数据集上的相对损坏精度(rCP)比原始方法高出4.69个百分点。展开更多
文摘输电线路的智能巡检视觉任务对电力系统的安全稳定至关重要。尽管深度学习网络在分布一致的训练和测试数据集上表现良好,但实际应用中数据分布的偏差常常会降低模型性能。为了解决这一问题,提出一种基于对比学习的训练方法(TMCL),旨在增强模型鲁棒性。首先,构建专为输电线路场景设计的基准测试集TLD-C(Transmission Line Dataset-Corruption)用于评估模型在面对图像损坏时的鲁棒性;其次,通过构建对类别特征敏感的正负样本对,提升模型对不同类别特征的区分能力;然后,使用结合对比损失和交叉熵损失的联合优化策略对特征提取过程施加额外约束,以优化特征向量的表征;最后,引入非局部特征去噪网络(NFD)用于提取与类别密切相关的特征。实验结果表明,模型改进后的训练方法在输电线路数据集(TLD)上的平均精度比原始方法高出3.40个百分点,在TLD-C数据集上的相对损坏精度(rCP)比原始方法高出4.69个百分点。