It is one of the most effective ways to use laboratory long air gap discharges for investigating the fundamental process involved in the lightning strike.During the 1960s and the 1970s,the electro-geometrical method(E...It is one of the most effective ways to use laboratory long air gap discharges for investigating the fundamental process involved in the lightning strike.During the 1960s and the 1970s,the electro-geometrical method(EGM)and the rolling sphere method were developed base on the breakdowncharacteristics of negative long spark discharges,which have been widely used to design the lightning shielding system of transmission lines and structures.In recent years,the scale of the power facilities is increased dramatically with the rising of power grid's voltage level.The impact of upward connecting leader launched from those large-scale facilities on the lightning shielding performance cannot be neglected;otherwise,the validity of the EGM in the lightning shielding design of EHV and UHV transmission lines will be challenged.The research evolutions on the lightning striking distance,the lightning simulation experiments and the positive upward connecting leader process by using laboratory long sparks are reviewed and discussed in this paper.展开更多
Arc resistance is an important parameter for characterizing long arcs in air, and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault. Therefore...Arc resistance is an important parameter for characterizing long arcs in air, and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault. Therefore, we constructed an experimental system to study the cha- racteristics of long AC arc in air. Driven by currents of 10 kA or 40 kA (root mean square value), the system produces arcs with different initial lengths of 1 m, 2 m and 4 m, and the movement of the arcs are captured by a high-speed camera. After performing experiments using the system, we carried out analysis and comparisons of the arc resistance of arcs with different lengths and different currents, as well as a study of the relationship between the macro-morphology and the resistance of the arcs. Conclusions were drawn from the experimental re- sults: the arc voltage had obvious saturation characteristics; the arc resistance increased with the increase of arc length and the decrease of current; the arcs bended or extended significantly in time and the peak arc voltage within a single cycle increased correspondingly; the arcs had voltage and current in the same phase. In the end, a formula of arc resistance based on the experiment results is derived.展开更多
文摘It is one of the most effective ways to use laboratory long air gap discharges for investigating the fundamental process involved in the lightning strike.During the 1960s and the 1970s,the electro-geometrical method(EGM)and the rolling sphere method were developed base on the breakdowncharacteristics of negative long spark discharges,which have been widely used to design the lightning shielding system of transmission lines and structures.In recent years,the scale of the power facilities is increased dramatically with the rising of power grid's voltage level.The impact of upward connecting leader launched from those large-scale facilities on the lightning shielding performance cannot be neglected;otherwise,the validity of the EGM in the lightning shielding design of EHV and UHV transmission lines will be challenged.The research evolutions on the lightning striking distance,the lightning simulation experiments and the positive upward connecting leader process by using laboratory long sparks are reviewed and discussed in this paper.
基金Project supported by National Natural Science Foundation of China(50907036), National Basic Research Program of China (973 Program ) (2011CB209403).
文摘Arc resistance is an important parameter for characterizing long arcs in air, and its laboratory testing is of importance for accurate arc modeling of electromagnetic transient caused by short circuit fault. Therefore, we constructed an experimental system to study the cha- racteristics of long AC arc in air. Driven by currents of 10 kA or 40 kA (root mean square value), the system produces arcs with different initial lengths of 1 m, 2 m and 4 m, and the movement of the arcs are captured by a high-speed camera. After performing experiments using the system, we carried out analysis and comparisons of the arc resistance of arcs with different lengths and different currents, as well as a study of the relationship between the macro-morphology and the resistance of the arcs. Conclusions were drawn from the experimental re- sults: the arc voltage had obvious saturation characteristics; the arc resistance increased with the increase of arc length and the decrease of current; the arcs bended or extended significantly in time and the peak arc voltage within a single cycle increased correspondingly; the arcs had voltage and current in the same phase. In the end, a formula of arc resistance based on the experiment results is derived.