Of concern is a viscoelastic beam modelled using the Timoshenko theory. It is well-kimwn that the system is exponentially stable if the kernel in the memory term is sub- exponential. That is, if the product of the ker...Of concern is a viscoelastic beam modelled using the Timoshenko theory. It is well-kimwn that the system is exponentially stable if the kernel in the memory term is sub- exponential. That is, if the product of the kernel with an exponential function is a summable function. In this article we address the questions: What if the kernel is tested against a different function (say Gamma) other than the exponential function? Would there still be stability? In the affirmative, what kind of decay rate we get? It is proved that for a non- decreasing function "Gamma" whose "logarithmic derivative" is decreasing to zero we have a decay of order Gamma to some power and in the case it decreases to a different value than zero then the decay is exponential.展开更多
A compliant tower is modeled as a partially dry, partially tapered, damped Timoshenko beam with the superstructure modeled as an eccentric tip mass, and a non-classical damped boundary at the base. The foundation is m...A compliant tower is modeled as a partially dry, partially tapered, damped Timoshenko beam with the superstructure modeled as an eccentric tip mass, and a non-classical damped boundary at the base. The foundation is modeled as a combination of a linear spring and a torsional spring, along with parallel linear and torsional dampers(Kelvin-Voigt model). The superstructure adds to the kinetic energy of the system without affecting the potential energy, thereby reducing the natural frequencies. The weight of the superstructure acts as an axial compressive load on the beam, reducing its natural frequencies further. The empty space factor due to the truss-type structure of the tower is included. The effect of shear deformation and rotary inertia are included in the vibration analysis; with the non-uniform beam mode-shapes being a weighted sum of the uniform beam mode-shapes satisfying the end condition. The weights are evaluated by the Rayleigh-Ritz(RR) method, and verified using finite element method(FEM). The weight of the superstructure acts as an axial compressive load on the beam. Kelvin-Voigt model of structural damping is included.A part of the structure being underwater, the virtual added inertia is included to calculate the wet natural frequencies. A parametric study is done for various magnitudes of tip mass and various levels of submergence. The computational efficiency and accuracy of the Rayleigh-Ritz method, as compared to the FEA, has been demonstrated. The advantage of using closed-form trial functions is clearly seen in the efficacy of calculating the various energy components in the RR method.展开更多
基金the financial support and the facilities provided by King Fahd University of Petroleum and Minerals through project No. IN111034
文摘Of concern is a viscoelastic beam modelled using the Timoshenko theory. It is well-kimwn that the system is exponentially stable if the kernel in the memory term is sub- exponential. That is, if the product of the kernel with an exponential function is a summable function. In this article we address the questions: What if the kernel is tested against a different function (say Gamma) other than the exponential function? Would there still be stability? In the affirmative, what kind of decay rate we get? It is proved that for a non- decreasing function "Gamma" whose "logarithmic derivative" is decreasing to zero we have a decay of order Gamma to some power and in the case it decreases to a different value than zero then the decay is exponential.
文摘A compliant tower is modeled as a partially dry, partially tapered, damped Timoshenko beam with the superstructure modeled as an eccentric tip mass, and a non-classical damped boundary at the base. The foundation is modeled as a combination of a linear spring and a torsional spring, along with parallel linear and torsional dampers(Kelvin-Voigt model). The superstructure adds to the kinetic energy of the system without affecting the potential energy, thereby reducing the natural frequencies. The weight of the superstructure acts as an axial compressive load on the beam, reducing its natural frequencies further. The empty space factor due to the truss-type structure of the tower is included. The effect of shear deformation and rotary inertia are included in the vibration analysis; with the non-uniform beam mode-shapes being a weighted sum of the uniform beam mode-shapes satisfying the end condition. The weights are evaluated by the Rayleigh-Ritz(RR) method, and verified using finite element method(FEM). The weight of the superstructure acts as an axial compressive load on the beam. Kelvin-Voigt model of structural damping is included.A part of the structure being underwater, the virtual added inertia is included to calculate the wet natural frequencies. A parametric study is done for various magnitudes of tip mass and various levels of submergence. The computational efficiency and accuracy of the Rayleigh-Ritz method, as compared to the FEA, has been demonstrated. The advantage of using closed-form trial functions is clearly seen in the efficacy of calculating the various energy components in the RR method.